1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/*
* Runtime benchmarking
* (C) 2008-2009 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/benchmark.h>
#include <botan/buf_comp.h>
#include <botan/block_cipher.h>
#include <botan/stream_cipher.h>
#include <botan/hash.h>
#include <botan/mac.h>
#include <memory>
#include <vector>
#include <chrono>
namespace Botan {
namespace {
typedef std::chrono::high_resolution_clock benchmark_clock;
/**
* Benchmark Buffered_Computation (hash or MAC)
*/
std::pair<u64bit, u64bit> bench_buf_comp(Buffered_Computation* buf_comp,
std::chrono::nanoseconds max_time,
const byte buf[], size_t buf_len)
{
u64bit reps = 0;
std::chrono::nanoseconds time_used(0);
while(time_used < max_time)
{
auto start = benchmark_clock::now();
buf_comp->update(buf, buf_len);
time_used += std::chrono::duration_cast<std::chrono::nanoseconds>(benchmark_clock::now() - start);
++reps;
}
u64bit ns_taken =
std::chrono::duration_cast<std::chrono::nanoseconds>(time_used).count();
return std::make_pair(reps * buf_len, ns_taken);
}
/**
* Benchmark block cipher
*/
std::pair<u64bit, u64bit>
bench_block_cipher(BlockCipher* block_cipher,
std::chrono::nanoseconds max_time,
byte buf[], size_t buf_len)
{
const size_t in_blocks = buf_len / block_cipher->block_size();
u64bit reps = 0;
std::chrono::nanoseconds time_used(0);
block_cipher->set_key(buf, block_cipher->maximum_keylength());
while(time_used < max_time)
{
auto start = benchmark_clock::now();
block_cipher->encrypt_n(buf, buf, in_blocks);
time_used += std::chrono::duration_cast<std::chrono::nanoseconds>(benchmark_clock::now() - start);
//time_used += benchmark_clock::now() - start;
++reps;
}
u64bit ns_taken =
std::chrono::duration_cast<std::chrono::nanoseconds>(time_used).count();
return std::make_pair(reps * in_blocks * block_cipher->block_size(),
ns_taken);
}
/**
* Benchmark stream
*/
std::pair<u64bit, u64bit>
bench_stream_cipher(StreamCipher* stream_cipher,
std::chrono::nanoseconds max_time,
byte buf[], size_t buf_len)
{
u64bit reps = 0;
stream_cipher->set_key(buf, stream_cipher->maximum_keylength());
std::chrono::nanoseconds time_used(0);
while(time_used < max_time)
{
auto start = benchmark_clock::now();
stream_cipher->cipher1(buf, buf_len);
time_used += benchmark_clock::now() - start;
++reps;
}
u64bit ns_taken =
std::chrono::duration_cast<std::chrono::nanoseconds>(time_used).count();
return std::make_pair(reps * buf_len, ns_taken);
}
/**
* Benchmark hash
*/
std::pair<u64bit, u64bit>
bench_hash(HashFunction* hash,
std::chrono::nanoseconds max_time,
const byte buf[], size_t buf_len)
{
return bench_buf_comp(hash, max_time, buf, buf_len);
}
/**
* Benchmark MAC
*/
std::pair<u64bit, u64bit>
bench_mac(MessageAuthenticationCode* mac,
std::chrono::nanoseconds max_time,
const byte buf[], size_t buf_len)
{
mac->set_key(buf, mac->maximum_keylength());
return bench_buf_comp(mac, max_time, buf, buf_len);
}
}
std::map<std::string, double>
algorithm_benchmark(const std::string& name,
Algorithm_Factory& af,
RandomNumberGenerator& rng,
std::chrono::milliseconds milliseconds,
size_t buf_size)
{
std::vector<std::string> providers = af.providers_of(name);
std::map<std::string, double> all_results;
if(providers.empty()) // no providers, nothing to do
return all_results;
std::chrono::nanoseconds ns_per_provider = milliseconds / providers.size();
std::vector<byte> buf(buf_size * 1024);
rng.randomize(&buf[0], buf.size());
for(size_t i = 0; i != providers.size(); ++i)
{
const std::string provider = providers[i];
std::pair<u64bit, u64bit> results(0, 0);
if(const BlockCipher* proto =
af.prototype_block_cipher(name, provider))
{
std::unique_ptr<BlockCipher> block_cipher(proto->clone());
results = bench_block_cipher(block_cipher.get(),
ns_per_provider,
&buf[0], buf.size());
}
else if(const StreamCipher* proto =
af.prototype_stream_cipher(name, provider))
{
std::unique_ptr<StreamCipher> stream_cipher(proto->clone());
results = bench_stream_cipher(stream_cipher.get(),
ns_per_provider,
&buf[0], buf.size());
}
else if(const HashFunction* proto =
af.prototype_hash_function(name, provider))
{
std::unique_ptr<HashFunction> hash(proto->clone());
results = bench_hash(hash.get(), ns_per_provider,
&buf[0], buf.size());
}
else if(const MessageAuthenticationCode* proto =
af.prototype_mac(name, provider))
{
std::unique_ptr<MessageAuthenticationCode> mac(proto->clone());
results = bench_mac(mac.get(), ns_per_provider,
&buf[0], buf.size());
}
if(results.first && results.second)
{
/* 953.67 == 1000 * 1000 * 1000 / 1024 / 1024 - the conversion
factor from bytes per nanosecond to mebibytes per second.
*/
double speed = (953.67 * results.first) / results.second;
all_results[provider] = speed;
}
}
return all_results;
}
}
|