1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/*
* Runtime benchmarking
* (C) 2008-2009,2013 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/benchmark.h>
#include <botan/buf_comp.h>
#include <botan/block_cipher.h>
#include <botan/stream_cipher.h>
#include <botan/aead.h>
#include <botan/hash.h>
#include <botan/mac.h>
#include <memory>
#include <vector>
#include <chrono>
namespace Botan {
namespace {
double time_op(std::chrono::nanoseconds runtime, std::function<void ()> op)
{
std::chrono::nanoseconds time_used(0);
size_t reps = 0;
auto start = std::chrono::high_resolution_clock::now();
while(time_used < runtime)
{
op();
++reps;
time_used = std::chrono::high_resolution_clock::now() - start;
}
const u64bit nsec_used = std::chrono::duration_cast<std::chrono::nanoseconds>(time_used).count();
const double seconds_used = static_cast<double>(nsec_used) / 1000000000;
return reps / seconds_used; // ie, return ops per second
}
}
std::map<std::string, double>
time_algorithm_ops(const std::string& name,
Algorithm_Factory& af,
const std::string& provider,
RandomNumberGenerator& rng,
std::chrono::nanoseconds runtime,
size_t buf_size)
{
const size_t Mebibyte = 1024*1024;
secure_vector<byte> buffer(buf_size * 1024);
rng.randomize(&buffer[0], buffer.size());
const double mb_mult = buffer.size() / static_cast<double>(Mebibyte);
if(const BlockCipher* proto = af.prototype_block_cipher(name, provider))
{
std::unique_ptr<BlockCipher> bc(proto->clone());
const SymmetricKey key(rng, bc->maximum_keylength());
return std::map<std::string, double>({
{ "key schedule", time_op(runtime / 8, [&]() { bc->set_key(key); }) },
{ "encrypt", mb_mult * time_op(runtime / 2, [&]() { bc->encrypt(buffer); }) },
{ "decrypt", mb_mult * time_op(runtime / 2, [&]() { bc->decrypt(buffer); }) },
});
}
else if(const StreamCipher* proto = af.prototype_stream_cipher(name, provider))
{
std::unique_ptr<StreamCipher> sc(proto->clone());
const SymmetricKey key(rng, sc->maximum_keylength());
return std::map<std::string, double>({
{ "key schedule", time_op(runtime / 8, [&]() { sc->set_key(key); }) },
{ "", mb_mult * time_op(runtime, [&]() { sc->encipher(buffer); }) },
});
}
else if(const HashFunction* proto = af.prototype_hash_function(name, provider))
{
std::unique_ptr<HashFunction> h(proto->clone());
return std::map<std::string, double>({
{ "", mb_mult * time_op(runtime, [&]() { h->update(buffer); }) },
});
}
else if(const MessageAuthenticationCode* proto = af.prototype_mac(name, provider))
{
std::unique_ptr<MessageAuthenticationCode> mac(proto->clone());
const SymmetricKey key(rng, mac->maximum_keylength());
return std::map<std::string, double>({
{ "key schedule", time_op(runtime / 8, [&]() { mac->set_key(key); }) },
{ "", mb_mult * time_op(runtime, [&]() { mac->update(buffer); }) },
});
}
else
{
std::unique_ptr<AEAD_Mode> enc(get_aead(name, ENCRYPTION));
std::unique_ptr<AEAD_Mode> dec(get_aead(name, DECRYPTION));
if(enc && dec)
{
const SymmetricKey key(rng, enc->maximum_keylength());
return std::map<std::string, double>({
{ "key schedule", time_op(runtime / 4, [&]() { enc->set_key(key); dec->set_key(key); }) / 2 },
{ "encrypt", mb_mult * time_op(runtime / 2, [&]() { enc->update(buffer, 0); buffer.resize(buf_size*1024); }) },
{ "decrypt", mb_mult * time_op(runtime / 2, [&]() { dec->update(buffer, 0); buffer.resize(buf_size*1024); }) },
});
}
}
return std::map<std::string, double>();
}
namespace {
double find_first_in(const std::map<std::string, double>& m,
const std::vector<std::string>& keys)
{
for(auto key : keys)
{
auto i = m.find(key);
if(i != m.end())
return i->second;
}
throw std::runtime_error("algorithm_factory no usable keys found in result");
}
}
std::map<std::string, double>
algorithm_benchmark(const std::string& name,
Algorithm_Factory& af,
RandomNumberGenerator& rng,
std::chrono::milliseconds milliseconds,
size_t buf_size)
{
const std::vector<std::string> providers = af.providers_of(name);
std::map<std::string, double> all_results; // provider -> ops/sec
if(!providers.empty())
{
const std::chrono::nanoseconds ns_per_provider = milliseconds / providers.size();
for(auto provider : providers)
{
auto results = time_algorithm_ops(name, af, provider, rng, ns_per_provider, buf_size);
all_results[provider] = find_first_in(results, { "", "update", "encrypt" });
}
}
return all_results;
}
}
|