1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
/*
* GCM Mode Encryption
* (C) 2013 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/gcm.h>
#include <botan/ctr.h>
#include <botan/internal/xor_buf.h>
#include <botan/loadstor.h>
namespace Botan {
namespace {
secure_vector<byte>
gcm_multiply(const secure_vector<byte>& x,
const secure_vector<byte>& y)
{
static const u64bit R = 0xE100000000000000;
u64bit V[2] = {
load_be<u64bit>(&y[0], 0),
load_be<u64bit>(&y[0], 1)
};
u64bit Z[2] = { 0, 0 };
// Both CLMUL and SSE2 versions would be useful
for(size_t i = 0; i != 2; ++i)
{
u64bit X = load_be<u64bit>(&x[0], i);
for(size_t j = 0; j != 64; ++j)
{
if(X >> 63)
{
Z[0] ^= V[0];
Z[1] ^= V[1];
}
const u64bit r = (V[1] & 1) ? R : 0;
V[1] = (V[0] << 63) | (V[1] >> 1);
V[0] = (V[0] >> 1) ^ r;
X <<= 1;
}
}
secure_vector<byte> out(16);
store_be<u64bit>(&out[0], Z[0], Z[1]);
return out;
}
void ghash_update(const secure_vector<byte>& H,
secure_vector<byte>& ghash,
const byte input[], size_t length)
{
const size_t BS = 16;
/*
This assumes if less than block size input then we're just on the
final block and should pad with zeros
*/
while(length)
{
const size_t to_proc = std::min(length, BS);
xor_buf(&ghash[0], &input[0], to_proc);
ghash = gcm_multiply(ghash, H);
input += to_proc;
length -= to_proc;
}
}
void ghash_finalize(const secure_vector<byte>& H,
secure_vector<byte>& ghash,
size_t ad_len, size_t text_len)
{
secure_vector<byte> final_block(16);
store_be<u64bit>(&final_block[0], 8*ad_len, 8*text_len);
ghash_update(H, ghash, &final_block[0], final_block.size());
}
}
/*
* GCM_Mode Constructor
*/
GCM_Mode::GCM_Mode(BlockCipher* cipher, size_t tag_size) :
m_tag_size(tag_size),
m_cipher_name(cipher->name()),
m_H(16), m_H_ad(16), m_mac(16),
m_ad_len(0), m_text_len(0)
{
if(cipher->block_size() != BS)
throw std::invalid_argument("OCB requires a 128 bit cipher so cannot be used with " +
cipher->name());
m_ctr.reset(new CTR_BE(cipher)); // CTR_BE takes ownership of cipher
if(m_tag_size < 8 || m_tag_size > 16)
throw Invalid_Argument(name() + ": Bad tag size " + std::to_string(m_tag_size));
}
void GCM_Mode::clear()
{
zeroise(m_H);
zeroise(m_H_ad);
zeroise(m_mac);
zeroise(m_enc_y0);
m_ad_len = 0;
m_text_len = 0;
m_ctr.reset();
}
std::string GCM_Mode::name() const
{
return (m_cipher_name + "/GCM");
}
size_t GCM_Mode::update_granularity() const
{
return 4096; // CTR-BE's internal block size
}
Key_Length_Specification GCM_Mode::key_spec() const
{
return m_ctr->key_spec();
}
void GCM_Mode::key_schedule(const byte key[], size_t keylen)
{
m_ctr->set_key(key, keylen);
const std::vector<byte> zeros(BS);
m_ctr->set_iv(&zeros[0], zeros.size());
zeroise(m_H);
m_ctr->cipher(&m_H[0], &m_H[0], m_H.size());
}
void GCM_Mode::set_associated_data(const byte ad[], size_t ad_len)
{
zeroise(m_H_ad);
ghash_update(m_H, m_H_ad, ad, ad_len);
m_ad_len = ad_len;
}
void GCM_Mode::start(const byte nonce[], size_t nonce_len)
{
if(!valid_nonce_length(nonce_len))
throw Invalid_IV_Length(name(), nonce_len);
secure_vector<byte> y0(BS);
if(nonce_len == 12)
{
copy_mem(&y0[0], nonce, nonce_len);
y0[15] = 1;
}
else
{
ghash_update(m_H, y0, nonce, nonce_len);
ghash_finalize(m_H, y0, 0, nonce_len);
}
m_ctr->set_iv(&y0[0], y0.size());
m_enc_y0.resize(BS);
m_ctr->encipher(m_enc_y0);
m_text_len = 0;
m_mac = m_H_ad;
}
void GCM_Encryption::update(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = &buffer[offset];
m_ctr->cipher(buf, buf, sz);
ghash_update(m_H, m_mac, buf, sz);
m_text_len += sz;
}
void GCM_Encryption::finish(secure_vector<byte>& buffer, size_t offset)
{
update(buffer, offset);
ghash_finalize(m_H, m_mac, m_ad_len, m_text_len);
m_mac ^= m_enc_y0;
buffer += std::make_pair(&m_mac[0], tag_size());
}
void GCM_Decryption::update(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = &buffer[offset];
ghash_update(m_H, m_mac, buf, sz);
m_ctr->cipher(buf, buf, sz);
m_text_len += sz;
}
void GCM_Decryption::finish(secure_vector<byte>& buffer, size_t offset)
{
BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
const size_t sz = buffer.size() - offset;
byte* buf = &buffer[offset];
BOTAN_ASSERT(sz >= tag_size(), "Have the tag as part of final input");
const size_t remaining = sz - tag_size();
// handle any final input before the tag
if(remaining)
{
ghash_update(m_H, m_mac, buf, remaining);
m_ctr->cipher(buf, buf, remaining);
m_text_len += remaining;
}
ghash_finalize(m_H, m_mac, m_ad_len, m_text_len);
m_mac ^= m_enc_y0;
const byte* included_tag = &buffer[remaining];
if(!same_mem(&m_mac[0], included_tag, tag_size()))
throw Integrity_Failure("GCM tag check failed");
buffer.resize(offset + remaining);
}
}
|