1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
The Command Line Interface
========================================
The botan program is a command line tool for using a broad variety of functions of the Botan library in the shell.
The CLI offers access to the following functionalities:
- Data en- and decoding
- Creation and administration of public key parameters and keypairs
- Calculation of message digests
- Calculation and verification of public key signatures
- Access to random number generators
- Creation of X.509 certificates and certificate signing requests
- OCSP certificate checking
- Performance measurements of implemented algorithms
- TLS server/client
- Primality testing, prime factorization and prime sampling
.. highlight:: sh
General Command Usage
---------------------------------
All commands follow the predefined syntax::
$ botan <command> <command-options>
and are listed with their available arguments when ``botan`` is called
with an unknown command, or without any command, or with ``--help``.
Hash
----------------
``hash --algo=SHA-256 --buf-size=4096 files``
Compute the *algo* digest over the data in *files*. *files* defaults to STDIN.
Password Hash
----------------
``gen_bcrypt --work-factor=12 password``
Calculate the bcrypt password digest of *file*. *work-factor* is an integer between 1 and 18.
A higher *work-factor* value results in a more expensive hash calculation.
``check_bcrypt password hash``
Checks if the bcrypt hash of the passed *password* equals the passed *hash* value.
HMAC
----------------
``hmac --hash=SHA-256 --buf-size=4096 key files``
Compute the HMAC tag with the cryptographic hash function *hash* using the key in file *key* over the data in *files*. *files* defaults to STDIN.
Public Key Cryptography
-------------------------------------
``keygen --algo=RSA --params= --passphrase= --pbe= --pbe-millis=300 --der-out``
Generate a PKCS #8 *algo* private key. If *der-out* is passed, the pair is BER encoded.
Otherwise, PEM encoding is used. To protect the PKCS #8 formatted key, it is recommended to encrypt it with a provided
*passphrase*. *pbe* is the name of the desired encryption algorithm, which uses *pbe-millis* milliseconds to derive the encryption key from
the passed *passphrase*. Algorithm specific parameters, as the desired bitlength of an RSA key, can be passed with *params*.
- For RSA *params* specifies the bit length of the RSA modulus. It defaults to 3072.
- For DH *params* specifies the DH parameters. It defaults to modp/ietf/2048.
- For DSA *params* specifies the DSA parameters. It defaults to dsa/botan/2048.
- For EC algorithms *params* specifies the elliptic curve. It defaults to secp256r1.
``pkcs8 --pass-in= --pub-out --der-out --pass-out= --pbe= --pbe-millis=300 key``
Open a PKCS #8 formatted key at *key*. If *key* is encrypted, the passphrase must be passed as
*pass-in*. It is possible to (re)encrypt the read key with the passphrase passed as *pass-out*. The
parameters *pbe-millis* and *pbe* work similarly to ``keygen``.
``sign --passphrase= --hash=SHA-256 --emsa= key file``
Sign the data in *file* using the PKCS #8 private key *key*. If *key* is encrypted, the used passphrase must
be passed as *pass-in*. *emsa* specifies the signature scheme and *hash* the cryptographic hash function used in the scheme.
- For RSA signatures EMSA4 (RSA-PSS) is the default scheme.
- For ECDSA and DSA *emsa* defaults to EMSA1.
``verify --hash=SHA-256 --emsa= pubkey file signature``
Verify the authenticity of the data in *file* with the provided signature *signature* and
the public key *pubkey*. Similarly to the signing process, *emsa* specifies the signature scheme and *hash* the cryptographic hash function used in the scheme.
``gen_dl_group --pbits=1024 --qbits=0 --type=subgroup``
Generate ANSI X9.42 encoded Diffie-Hellman group parameters.
- If *type=subgroup* is passed, the size of the prime subgroup q is sampled as a prime of *qbits* length and p is *pbits* long. If *qbits* is not passed, its length is estimated from *pbits* as described in RFC 3766.
- If *type=strong* is passed, p is sampled as a safe prime with length *pbits* and the prime subgroup has size q with *pbits*-1 length.
``dl_group_info --pem name``
Print raw Diffie-Hellman parameters (p,g) of the standarized DH group *name*. If *pem* is set, the X9.42 encoded group is printed.
``ec_group_info --pem name``
Print raw elliptic curve domain parameters of the standarized curve *name*. If *pem* is set, the encoded domain is printed.
X.509
----------------------------------------------
``gen_pkcs10 key CN --country= --organization= --email= --key-pass= --hash=SHA-256``
Generate a PKCS #10 certificate signing request (CSR) using the passed PKCS #8 private key *key*. If the private key is
encrypted, the decryption passphrase *key-pass* has to be passed.
``gen_self_signed key CN --country= --dns= --organization= --email= --key-pass= --ca --hash=SHA-256``
Generate a self signed X.509 certificate using the PKCS #8 private key *key*. If the private key is encrypted, the decryption
passphrase *key-pass* has to be passed. If *ca* is passed, the certificate is marked for certificate authority (CA) usage.
``sign_cert --ca-key-pass= --hash=SHA-256 --duration=365 ca_cert ca_key pkcs10_req``
Create a CA signed X.509 certificate from the information contained in the PKCS #10 CSR *pkcs10_req*. The CA certificate is passed as
*ca_cert* and the respective PKCS #8 private key as *ca_key*. If the private key is encrypted, the decryption
passphrase *ca-key-pass* has to be passed. The created certificate has a validity period of *duration* days.
``ocsp_check subject issuer``
Verify an X.509 certificate against the issuers OCSP responder. Pass the certificate to validate as *subject* and the CA certificate as *issuer*.
``cert_info --ber file``
Parse X.509 PEM certificate and display data fields.
``cert_verify subject ca_certs``
Verify if the passed X.509 certificate *subject* passes the path validation. The list of trusted CA certificates is passed with *ca_certs*
TLS Server/Client
-----------------------
``tls_client host --port=443 --print-certs --policy= --tls1.0 --tls1.1 --tls1.2 --session-db= --session-db-pass= --next-protocols= --type=tcp``
Implements a testing TLS client, which connects to *host* via TCP or UDP on port *port*. The TLS version can be set with the flags *tls1.0*, *tls1.1* and *tls1.2* of which the lowest specified version is automatically chosen.
If none of the TLS version flags is set, the latest supported version is chosen. The client honors the TLS policy defined in the *policy* file and prints all certificates in the chain, if *print-certs* is passed.
*next-protocols* is a comma seperated list and specifies the protocols to advertise with Application-Layer Protocol Negotiation (ALPN).
``tls_server cert key --port=443 --type=tcp --policy=``
Implements a testing TLS server, which allows TLS clients to connect. Binds to either TCP or UDP on port *port*. The server uses the certificate *cert* and the respective PKCS #8
private key *key*. The server honors the TLS policy defined in the *policy* file.
Number Theory
-----------------------
``is_prime --prob=56 n``
Test if the integer *n* is composite or prime with a Miller-Rabin primality test with *(prob+2)/2* iterations.
``factor n``
Factor the integer *n* using a combination of trial division by small primes, and Pollard's Rho algorithm.
``gen_prime --count=1 bits``
Samples *count* primes with a length of *bits* bits.
PSK Database
--------------------
Only available if sqlite3 support was compiled in.
``psk_set db db_key name psk``
Using the PSK database named db and encrypting under the (hex) key ``db_key``,
save the provided psk (also hex) under ``name``::
$ botan psk_set psk.db deadba55 bunny f00fee
``psk_get db db_key name``
Get back a value saved with ``psk_set``::
$ botan psk_get psk.db deadba55 bunny
f00fee
``psk_list db db_key``
List all values saved to the database under the given key::
$ botan psk_list psk.db deadba55
bunny
Miscellaneous Commands
-------------------------------------
``version --full``
Print version. Pass --full for additional details.
``config info_type``
Print the used prefix, cflags, ldflags or libs.
``cpuid``
List available processor flags (aes_ni, SIMD extensions, ...).
``asn1print file``
Decode and print *file* with ASN.1 Basic Encoding Rules (BER).
``base64_dec file``
Encode *file* to Base64.
``base64_enc file``
Decode Base64 encoded *file*.
``http_get url``
Retrieve ressource from the passed http/https *url*.
``speed --msec=300 --provider= --buf-size=4096 algos``
Measures the speed of the passed *algos*. If no *algos* are passed all available
speed tests are executed. *msec* (in milliseconds) sets the period of measurement for each algorithm.
``rng --system --rdrand bytes``
Sample *bytes* random bytes from the specified random number generator. If *system* is set, the Botan
System_RNG is used. If *system* is unset and *rdrand* is set, the hardware rng RDRAND_RNG is used.
If both are unset, the Botan AutoSeeded_RNG is used.
``cc_encrypt CC passphrase --tweak=``
Encrypt the passed valid credit card number *CC* using FPE encryption and the passphrase *passphrase*. The key is derived from the
passphrase using PBKDF2 with SHA256. Due to the nature of FPE,
the ciphertext is also a credit card number with a valid checksum. *tweak* is public and parameterizes the encryption function.
``cc_decrypt CC passphrase --tweak=``
Decrypt the passed valid ciphertext *CC* using FPE decryption with the passphrase *passphrase* and the tweak *tweak*.
|