1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
#include <botan/botan.h>
#include <botan/fpe_fe1.h>
#include <botan/sha160.h>
using namespace Botan;
#include <iostream>
#include <stdexcept>
namespace {
byte luhn_checksum(u64bit cc_number)
{
byte sum = 0;
bool alt = false;
while(cc_number)
{
byte digit = cc_number % 10;
if(alt)
{
digit *= 2;
if(digit > 9)
digit -= 9;
}
sum += digit;
cc_number /= 10;
alt = !alt;
}
return (sum % 10);
}
bool luhn_check(u64bit cc_number)
{
return (luhn_checksum(cc_number) == 0);
}
u64bit cc_rank(u64bit cc_number)
{
// Remove Luhn checksum
return cc_number / 10;
}
u64bit cc_derank(u64bit cc_number)
{
for(u32bit i = 0; i != 10; ++i)
if(luhn_check(cc_number * 10 + i))
return (cc_number * 10 + i);
return 0;
}
/*
* Use the SHA-1 hash of the account name or ID as a tweak
*/
SecureVector<byte> sha1(const std::string& acct_name)
{
SHA_160 hash;
hash.update(acct_name);
return hash.final();
}
u64bit encrypt_cc_number(u64bit cc_number,
const SymmetricKey& key,
const std::string& acct_name)
{
BigInt n = 1000000000000000;
u64bit cc_ranked = cc_rank(cc_number);
BigInt c = FPE::fe1_encrypt(n, cc_ranked, key, sha1(acct_name));
if(c.bits() > 50)
throw std::runtime_error("FPE produced a number too large");
u64bit enc_cc = 0;
for(u32bit i = 0; i != 7; ++i)
enc_cc = (enc_cc << 8) | c.byte_at(6-i);
return cc_derank(enc_cc);
}
u64bit decrypt_cc_number(u64bit enc_cc,
const SymmetricKey& key,
const std::string& acct_name)
{
BigInt n = 1000000000000000;
u64bit cc_ranked = cc_rank(enc_cc);
BigInt c = FPE::fe1_decrypt(n, cc_ranked, key, sha1(acct_name));
if(c.bits() > 50)
throw std::runtime_error("FPE produced a number too large");
u64bit dec_cc = 0;
for(u32bit i = 0; i != 7; ++i)
dec_cc = (dec_cc << 8) | c.byte_at(6-i);
return cc_derank(dec_cc);
}
}
int main(int argc, char* argv[])
{
LibraryInitializer init;
if(argc != 4)
{
std::cout << "Usage: " << argv[0] << " cc-number acct-name passwd\n";
return 1;
}
u64bit cc_number = atoll(argv[1]);
std::string acct_name = argv[2];
std::string passwd = argv[3];
std::cout << "Input was: " << cc_number << ' '
<< luhn_check(cc_number) << '\n';
/*
* In practice something like PBKDF2 with a salt and high iteration
* count would be a good idea.
*/
SymmetricKey key = sha1(passwd);
u64bit enc_cc = encrypt_cc_number(cc_number, key, acct_name);
std::cout << "Encrypted: " << enc_cc
<< ' ' << luhn_check(enc_cc) << '\n';
u64bit dec_cc = decrypt_cc_number(enc_cc, key, acct_name);
std::cout << "Decrypted: " << dec_cc
<< ' ' << luhn_check(dec_cc) << '\n';
if(dec_cc != cc_number)
std::cout << "Something went wrong :( Bad CC checksum?\n";
}
|