1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
#include <botan/dsa.h>
#include <botan/rsa.h>
#include <botan/dh.h>
#include <botan/nr.h>
#include <botan/rw.h>
#include <botan/elgamal.h>
#include <botan/parsing.h>
#include <botan/pkcs8.h>
#include <botan/look_pk.h>
using namespace Botan;
#include "common.h"
#include "bench.h"
#include <iostream>
#include <fstream>
#include <string>
#include <memory>
#define PRINT_MS_PER_OP 0 /* If 0, print ops / second */
void bench_enc(PK_Encryptor*, RandomNumberGenerator&,
const std::string&, double, bool);
void bench_dec(PK_Encryptor*, PK_Decryptor*, RandomNumberGenerator&,
const std::string&, double, bool);
void bench_sig(PK_Signer*, RandomNumberGenerator&,
const std::string&, double, bool);
void bench_ver(PK_Signer*, PK_Verifier*,
RandomNumberGenerator&,
const std::string&, double, bool);
void bench_kas(PK_Key_Agreement*, RandomNumberGenerator&,
const std::string&, double, bool);
void bench_pk(RandomNumberGenerator& rng,
const std::string& algo, bool html, double seconds)
{
/*
There is some strangeness going on here. It looks like algorithms
at the end take some kind of penalty. For example, running the RW tests
first got a result of:
RW-1024: 148.14 ms / private operation
but running them last output:
RW-1024: 363.54 ms / private operation
I think it's from memory fragmentation in the allocators, but I'm
not really sure. Need to investigate.
Until then, I've basically ordered the tests in order of most important
algorithms (RSA, DSA) to least important (NR, RW).
This strange behaviour does not seem to occur with DH (?)
To get more accurate runs, use --bench-algo (RSA|DSA|DH|ELG|NR); in this
case the distortion is less than 5%, which is good enough.
We do random keys with the DL schemes, since it's so easy and fast to
generate keys for them. For RSA and RW, we load the keys from a file. The
RSA keys are stored in a PKCS #8 structure, while RW is stored in a more
ad-hoc format (the RW algorithm has no assigned OID that I know of, so
there is no way to encode a RW key into a PKCS #8 structure).
*/
if(algo == "All" || algo == "RSA")
{
const u32bit keylen[] = { 512, 1024, 1536, 2048, 3072, 4096, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
const std::string file = "checks/keys/rsa" + len_str + ".pem";
std::auto_ptr<RSA_PrivateKey> key(
dynamic_cast<RSA_PrivateKey*>(PKCS8::load_key(file, rng))
);
if(key.get() == 0)
throw Invalid_Argument("Failure reading RSA key from " + file);
bench_enc(get_pk_encryptor(*key, "Raw"),
rng, "RSA-" + len_str, seconds, html);
bench_dec(get_pk_encryptor(*key, "Raw"),
get_pk_decryptor(*key, "Raw"),
rng, "RSA-" + len_str, seconds, html);
}
}
if(algo == "All" || algo == "DSA")
{
const u32bit keylen[] = { 512, 768, 1024, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
DSA_PrivateKey key(rng, "dsa/jce/" + len_str);
bench_ver(get_pk_signer(key, "EMSA1(SHA-1)"),
get_pk_verifier(key, "EMSA1(SHA-1)"),
rng, "DSA-" + len_str, seconds, html);
bench_sig(get_pk_signer(key, "EMSA1(SHA-1)"),
rng, "DSA-" + len_str, seconds, html);
}
}
if(algo == "All" || algo == "DH")
{
const u32bit keylen[] = { 768, 1024, 1536, 2048, 3072, 4096, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
DH_PrivateKey key(rng,
"modp/ietf/" + len_str);
bench_kas(get_pk_kas(key, "Raw"), rng,
"DH-" + len_str, seconds, html);
}
}
if(algo == "All" || algo == "ELG" || algo == "ElGamal")
{
const u32bit keylen[] = { 768, 1024, 1536, 2048, 3072, 4096, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
ElGamal_PrivateKey key(rng, "modp/ietf/" + len_str);
bench_enc(get_pk_encryptor(key, "Raw"),
rng, "ELG-" + len_str, seconds, html);
bench_dec(get_pk_encryptor(key, "Raw"),
get_pk_decryptor(key, "Raw"),
rng, "ELG-" + len_str, seconds, html);
}
}
if(algo == "All" || algo == "NR")
{
const u32bit keylen[] = { 512, 768, 1024, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
NR_PrivateKey key(rng, "dsa/jce/" + len_str);
bench_ver(get_pk_signer(key, "EMSA1(SHA-1)"),
get_pk_verifier(key, "EMSA1(SHA-1)"),
rng, "NR-" + len_str, seconds, html);
bench_sig(get_pk_signer(key, "EMSA1(SHA-1)"),
rng, "NR-" + len_str, seconds, html);
}
}
if(algo == "All" || algo == "RW")
{
const u32bit keylen[] = { 512, 1024, 0 };
for(size_t j = 0; keylen[j]; j++)
{
const std::string len_str = to_string(keylen[j]);
const std::string file = "checks/keys/rw" + len_str + ".pem";
RW_PrivateKey* key =
dynamic_cast<RW_PrivateKey*>(PKCS8::load_key(file, rng));
bench_ver(get_pk_signer(*key, "EMSA2(SHA-1)"),
get_pk_verifier(*key, "EMSA2(SHA-1)"),
rng, "RW-" + len_str, seconds, html);
bench_sig(get_pk_signer(*key, "EMSA2(SHA-1)"),
rng, "RW-" + len_str, seconds, html);
delete key;
}
}
}
namespace {
void print_result(bool html, u32bit runs, u64bit clocks_used,
const std::string& algo_name, const std::string& op)
{
double seconds = static_cast<double>(clocks_used) / get_ticks();
double mseconds_per_run = 1000 * (seconds / runs);
double runs_per_sec = runs / seconds;
if(html)
{
std::cout << " <TR><TH>" << algo_name << " (" << op << ") <TH>";
if(PRINT_MS_PER_OP)
std::cout << mseconds_per_run;
else
std::cout << runs_per_sec;
std::cout << std::endl;
}
else
{
std::cout << algo_name << ": ";
std::cout.setf(std::ios::fixed, std::ios::floatfield);
std::cout.precision(2);
if(PRINT_MS_PER_OP)
std::cout << mseconds_per_run << " ms / " << op << "\n";
else
std::cout << runs_per_sec << " ops / second (" << op << ")\n";
}
}
}
void bench_enc(PK_Encryptor* enc,
RandomNumberGenerator& rng,
const std::string& algo_name,
double seconds, bool html)
{
static const u32bit MSG_SIZE = 16;
byte msg[MSG_SIZE];
u32bit runs = 0;
u64bit clocks_used = 0;
const u64bit ticks = get_ticks();
while(clocks_used < seconds * ticks)
{
runs++;
rng.randomize(msg, MSG_SIZE);
u64bit start = get_clock();
enc->encrypt(msg, MSG_SIZE, rng);
clocks_used += get_clock() - start;
}
delete enc;
print_result(html, runs, clocks_used, algo_name, "public operation");
}
void bench_dec(PK_Encryptor* enc, PK_Decryptor* dec,
RandomNumberGenerator& rng,
const std::string& algo_name,
double seconds, bool html)
{
static const u32bit MSG_SIZE = 16;
byte msg[MSG_SIZE];
rng.randomize(msg, MSG_SIZE);
SecureVector<byte> output;
u32bit runs = 0;
u64bit clocks_used = 0;
SecureVector<byte> encrypted_msg = enc->encrypt(msg, MSG_SIZE, rng);
const u64bit ticks = get_ticks();
while(clocks_used < seconds * ticks)
{
runs++;
rng.randomize(msg, MSG_SIZE);
msg[0] |= 0x80; // make sure it works with "Raw" padding
encrypted_msg = enc->encrypt(msg, MSG_SIZE, rng);
u64bit start = get_clock();
output = dec->decrypt(encrypted_msg);
clocks_used += get_clock() - start;
if(output.size() != MSG_SIZE ||
std::memcmp(msg, output, MSG_SIZE) != 0)
{
std::cout << hex_encode(msg, MSG_SIZE) << std::endl;
std::cout << hex_encode(output, output.size()) << std::endl;
throw Internal_Error("Decrypt check failed during benchmark");
}
}
delete enc;
delete dec;
print_result(html, runs, clocks_used, algo_name, "private operation");
}
void bench_sig(PK_Signer* sig,
RandomNumberGenerator& rng,
const std::string& algo_name,
double seconds, bool html)
{
static const u32bit MSG_SIZE = 16;
byte msg[MSG_SIZE];
u32bit runs = 0;
u64bit clocks_used = 0;
const u64bit ticks = get_ticks();
while(clocks_used < seconds * ticks)
{
runs++;
rng.randomize(msg, MSG_SIZE);
u64bit start = get_clock();
sig->update(msg, MSG_SIZE);
sig->signature(rng);
clocks_used += get_clock() - start;
}
delete sig;
print_result(html, runs, clocks_used, algo_name, "private operation");
}
void bench_ver(PK_Signer* sig, PK_Verifier* ver,
RandomNumberGenerator& rng,
const std::string& algo_name,
double seconds, bool html)
{
static const u32bit MSG_SIZE = 16;
byte msg[MSG_SIZE];
rng.randomize(msg, MSG_SIZE);
sig->update(msg, MSG_SIZE);
SecureVector<byte> signature = sig->signature(rng);
u32bit runs = 0;
u64bit clocks_used = 0;
const u64bit ticks = get_ticks();
while(clocks_used < seconds * ticks)
{
// feel free to tweak, but make sure this always runs when runs == 0
if(runs % 100 == 0)
{
rng.randomize(msg, MSG_SIZE);
sig->update(msg, MSG_SIZE);
signature = sig->signature(rng);
}
runs++;
u64bit start = get_clock();
ver->update(msg, MSG_SIZE);
bool result = ver->check_signature(signature, signature.size());
clocks_used += get_clock() - start;
if(!result)
throw Internal_Error("Signature check failed during benchmark");
}
delete sig;
delete ver;
print_result(html, runs, clocks_used, algo_name, "public operation");
}
void bench_kas(PK_Key_Agreement* kas,
RandomNumberGenerator& rng,
const std::string& algo_name,
double seconds, bool html)
{
/* 128 bits: should always be considered valid (what about ECC?) */
static const u32bit REMOTE_KEY_SIZE = 16;
byte key[REMOTE_KEY_SIZE];
u32bit runs = 0;
u64bit clocks_used = 0;
const u64bit ticks = get_ticks();
while(clocks_used < seconds * ticks)
{
runs++;
rng.randomize(key, REMOTE_KEY_SIZE);
u64bit start = get_clock();
kas->derive_key(0, key, REMOTE_KEY_SIZE);
clocks_used += get_clock() - start;
}
delete kas;
print_result(html, runs, clocks_used, algo_name, "key agreement");
}
|