1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
#include "validate.h"
#include <botan/ocb.h>
#include <botan/hex.h>
#include <botan/sha2_32.h>
#include <botan/aes.h>
#include <iostream>
//#include <botan/selftest.h>
using namespace Botan;
// something like this should be in the library
std::vector<byte> ocb_encrypt(const SymmetricKey& key,
const std::vector<byte>& nonce,
const byte pt[], size_t pt_len,
const byte ad[], size_t ad_len)
{
//std::unique_ptr<AEAD_Mode> ocb = get_aead("AES-128/OCB", ENCRYPTION);
OCB_Encryption ocb(new AES_128);
ocb.set_key(key);
ocb.set_associated_data(ad, ad_len);
ocb.start(&nonce[0], nonce.size());
secure_vector<byte> buf(pt, pt+pt_len);
ocb.update(buf, 0);
ocb.finish(buf, buf.size());
//ocb.finish(buf);
return unlock(buf);
}
std::vector<byte> ocb_decrypt(const SymmetricKey& key,
const std::vector<byte>& nonce,
const byte ct[], size_t ct_len,
const byte ad[], size_t ad_len)
{
OCB_Decryption ocb(new AES_128);
ocb.set_key(key);
ocb.set_associated_data(ad, ad_len);
ocb.start(&nonce[0], nonce.size());
secure_vector<byte> buf(ct, ct+ct_len);
ocb.update(buf, 0);
ocb.finish(buf, buf.size());
//ocb.finish(buf);
return unlock(buf);
}
template<typename Alloc, typename Alloc2>
std::vector<byte> ocb_encrypt(const SymmetricKey& key,
const std::vector<byte>& nonce,
const std::vector<byte, Alloc>& pt,
const std::vector<byte, Alloc2>& ad)
{
return ocb_encrypt(key, nonce, &pt[0], pt.size(), &ad[0], ad.size());
}
template<typename Alloc, typename Alloc2>
std::vector<byte> ocb_decrypt(const SymmetricKey& key,
const std::vector<byte>& nonce,
const std::vector<byte, Alloc>& pt,
const std::vector<byte, Alloc2>& ad)
{
return ocb_decrypt(key, nonce, &pt[0], pt.size(), &ad[0], ad.size());
}
std::vector<byte> ocb_encrypt(OCB_Encryption& ocb,
const std::vector<byte>& nonce,
const std::vector<byte>& pt,
const std::vector<byte>& ad)
{
ocb.set_associated_data(&ad[0], ad.size());
ocb.start(&nonce[0], nonce.size());
secure_vector<byte> buf(pt.begin(), pt.end());
ocb.finish(buf, 0);
return unlock(buf);
}
void test_ocb_long_filters()
{
SymmetricKey key("00000000000000000000000000000000");
OCB_Encryption ocb(new AES_128);
ocb.set_key(key);
const std::vector<byte> empty;
std::vector<byte> N(12);
std::vector<byte> C;
for(size_t i = 0; i != 128; ++i)
{
const std::vector<byte> S(i);
N[11] = i;
const std::vector<byte> C1 = ocb_encrypt(ocb, N, S, S);
const std::vector<byte> C2 = ocb_encrypt(ocb, N, S, empty);
const std::vector<byte> C3 = ocb_encrypt(ocb, N, empty, S);
//std::cout << "C_" << i << " = " << hex_encode(C1) << " " << hex_encode(C2) << " " << hex_encode(C3) << "\n";
C += C1;
C += C2;
C += C3;
}
SHA_256 sha256;
sha256.update(C);
const std::string C_hash = hex_encode(sha256.final());
const std::string expected_C_hash = "C4E5158067F49356042296B13B050DE00A120EA846073E5E0DACFD0C9F43CC65";
if(C_hash != expected_C_hash)
{
std::cout << "OCB-128 long test, C hashes differ\n";
std::cout << C_hash << " !=\n" << expected_C_hash << "\n";
}
//std::cout << "SHA-256(C) = " << C_hash << "\n";
N[11] = 0;
const std::vector<byte> cipher = ocb_encrypt(ocb, N, empty, C);
const std::string expected = "B2B41CBF9B05037DA7F16C24A35C1C94";
const std::string cipher_hex = hex_encode(cipher);
if(cipher_hex != expected)
std::cout << "OCB AES-128 long test mistmatch " << cipher_hex << " != " << expected << "\n";
else
std::cout << "OCB AES-128 long test OK\n";
}
void test_ocb_long()
{
SymmetricKey key("00000000000000000000000000000000");
const std::vector<byte> empty;
std::vector<byte> N(12);
std::vector<byte> C;
for(size_t i = 0; i != 128; ++i)
{
const std::vector<byte> S(i);
N[11] = i;
const std::vector<byte> C1 = ocb_encrypt(key, N, S, S);
const std::vector<byte> C2 = ocb_encrypt(key, N, S, empty);
const std::vector<byte> C3 = ocb_encrypt(key, N, empty, S);
//std::cout << "C_" << i << " = " << hex_encode(C1) << " " << hex_encode(C2) << " " << hex_encode(C3) << "\n";
C += C1;
C += C2;
C += C3;
SHA_256 sha256;
sha256.update(C);
//std::cout << "SHA-256(C_" << i << ") = " << hex_encode(sha256.final()) << "\n";
}
// SHA-256 hash of C would be useful
SHA_256 sha256;
sha256.update(C);
const std::string C_hash = hex_encode(sha256.final());
const std::string expected_C_hash = "C4E5158067F49356042296B13B050DE00A120EA846073E5E0DACFD0C9F43CC65";
if(C_hash != expected_C_hash)
{
std::cout << "OCB-128 long test, C hashes differ\n";
std::cout << C_hash << " !=\n" << expected_C_hash << "\n";
}
//std::cout << "SHA-256(C) = " << C_hash << "\n";
N[11] = 0;
const std::vector<byte> cipher = ocb_encrypt(key, N, empty, C);
const std::string expected = "B2B41CBF9B05037DA7F16C24A35C1C94";
const std::string cipher_hex = hex_encode(cipher);
if(cipher_hex != expected)
std::cout << "OCB AES-128 long test mistmatch " << cipher_hex << " != " << expected << "\n";
else
std::cout << "OCB AES-128 long test OK\n";
try
{
const std::vector<byte> p = ocb_decrypt(key, N, cipher, C);
BOTAN_ASSERT(p.empty(), "return plaintext is empty");
}
catch(std::exception& e)
{
std::cout << "Error in OCB decrypt - " << e.what() << "\n";
}
try
{
C[0] ^= 1;
ocb_decrypt(key, N, cipher, C);
std::cout << "OCB failed to reject bad message\n";
}
catch(std::exception& e)
{
}
}
void test_ocb()
{
SymmetricKey key("000102030405060708090A0B0C0D0E0F");
std::vector<byte> nonce = hex_decode("000102030405060708090A0B");
std::vector<byte> pt = hex_decode("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627");
std::vector<byte> ad = hex_decode("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627");
const std::string expected = "BEA5E8798DBE7110031C144DA0B26122CEAAB9B05DF771A657149D53773463CB68C65778B058A635659C623211DEEA0DE30D2C381879F4C8";
std::vector<byte> ctext = ocb_encrypt(key, nonce, pt, ad);
const std::string ctext_hex = hex_encode(ctext);
if(ctext_hex != expected)
std::cout << "OCB/AES-128 encrypt test failure\n" << ctext_hex << " !=\n" << expected << "\n";
else
std::cout << "OCB/AES-128 encrypt OK\n";
try
{
std::vector<byte> dec = ocb_decrypt(key, nonce, ctext, ad);
if(dec == pt) { std::cout << "OCB decrypts OK\n"; }
else { std::cout << "OCB fails to decrypt\n"; }
}
catch(std::exception& e)
{
std::cout << "Correct OCB message rejected - " << e.what() << "\n";
}
//test_ocb_long();
test_ocb_long_filters();
}
|