aboutsummaryrefslogtreecommitdiffstats
path: root/checks/dolook2.cpp
blob: 9dc72cacb580ee9bb05a6c5b6a53a3c10af68235 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include <vector>
#include <string>
#include <cstdlib>

#include <botan/botan.h>
#include <botan/lookup.h>
#include <botan/filters.h>

#if defined(BOTAN_HAS_RANDPOOL)
  #include <botan/randpool.h>
#endif

#if defined(BOTAN_HAS_X931_RNG)
  #include <botan/x931_rng.h>
#endif

#include "common.h"
using namespace Botan;


/* A weird little hack to fit S2K algorithms into the validation suite
   You probably wouldn't ever want to actually use the S2K algorithms like
   this, the raw S2K interface is more convenient for actually using them
*/
class S2K_Filter : public Filter
   {
   public:
      void write(const byte in[], u32bit len)
         { passphrase += std::string(reinterpret_cast<const char*>(in), len); }
      void end_msg()
         {
         s2k->change_salt(salt, salt.size());
         s2k->set_iterations(iterations);
         SymmetricKey x = s2k->derive_key(outlen, passphrase);
         send(x.bits_of());
         }
      S2K_Filter(S2K* algo, const SymmetricKey& s, u32bit o, u32bit i)
         {
         s2k = algo;
         outlen = o;
         iterations = i;
         salt = s.bits_of();
         }
      ~S2K_Filter() { delete s2k; }
   private:
      std::string passphrase;
      S2K* s2k;
      SecureVector<byte> salt;
      u32bit outlen, iterations;
   };

/* Not too useful generally; just dumps random bits for benchmarking */
class RNG_Filter : public Filter
   {
   public:
      void write(const byte[], u32bit);

      RNG_Filter(RandomNumberGenerator* r) : rng(r) {}
      ~RNG_Filter() { delete rng; }
   private:
      RandomNumberGenerator* rng;
   };

class KDF_Filter : public Filter
   {
   public:
      void write(const byte in[], u32bit len)
         { secret.append(in, len); }
      void end_msg()
         {
         SymmetricKey x = kdf->derive_key(outlen,
                                          secret, secret.size(),
                                          salt, salt.size());
         send(x.bits_of(), x.length());
         }
      KDF_Filter(KDF* algo, const SymmetricKey& s, u32bit o)
         {
         kdf = algo;
         outlen = o;
         salt = s.bits_of();
         }
      ~KDF_Filter() { delete kdf; }
   private:
      SecureVector<byte> secret;
      SecureVector<byte> salt;
      KDF* kdf;
      u32bit outlen;
   };

Filter* lookup_s2k(const std::string& algname,
                   const std::vector<std::string>& params)
   {
   S2K* s2k = 0;

   try {
      s2k = get_s2k(algname);
      }
   catch(...) { }

   if(s2k)
      return new S2K_Filter(s2k, params[0], to_u32bit(params[1]),
                            to_u32bit(params[2]));
   return 0;
   }

void RNG_Filter::write(const byte[], u32bit length)
   {
   if(length)
      {
      SecureVector<byte> out(length);
      rng->randomize(out, out.size());
      send(out);
      }
   }

Filter* lookup_rng(const std::string& algname,
                   const std::string& key)
   {
   RandomNumberGenerator* prng = 0;

#if defined(BOTAN_HAS_X931_RNG)
   if(algname == "X9.31-RNG(TripleDES)")
      prng = new ANSI_X931_RNG(get_block_cipher("TripleDES"),
                               new Fixed_Output_RNG(decode_hex(key)));
   else if(algname == "X9.31-RNG(AES-128)")
      prng = new ANSI_X931_RNG(get_block_cipher("AES-128"),
                               new Fixed_Output_RNG(decode_hex(key)));
   else if(algname == "X9.31-RNG(AES-192)")
      prng = new ANSI_X931_RNG(get_block_cipher("AES-192"),
                               new Fixed_Output_RNG(decode_hex(key)));
   else if(algname == "X9.31-RNG(AES-256)")
      prng = new ANSI_X931_RNG(get_block_cipher("AES-256"),
                               new Fixed_Output_RNG(decode_hex(key)));
#endif

#if defined(BOTAN_HAS_X931_RNG) && defined(BOTAN_HAS_RANDPOOL)
   // these are used for benchmarking: AES-256/SHA-256 matches library
   // defaults, so benchmark reflects real-world performance (maybe)
   if(!prng && (algname == "Randpool" || algname == "X9.31-RNG"))
      {
      Randpool* randpool = new Randpool(get_block_cipher("AES-256"),
                                        get_mac("HMAC(SHA-256)"));
      randpool->add_entropy(reinterpret_cast<const byte*>(key.c_str()),
                            key.length());

      if(algname == "Randpool")
         prng = randpool;
      else
         prng = new ANSI_X931_RNG(get_block_cipher("AES-256"), randpool);
      }
#endif

   if(prng)
      return new RNG_Filter(prng);

   return 0;
   }

Filter* lookup_kdf(const std::string& algname, const std::string& salt,
                   const std::string& params)
   {
   KDF* kdf = 0;
   try {
      kdf = get_kdf(algname);
      }
   catch(...) { return 0; }

   if(kdf)
      return new KDF_Filter(kdf, salt, to_u32bit(params));
   return 0;
   }