/* * (C) 2017 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include "tests.h" #if defined(BOTAN_HAS_SIMD_32) #include #include #endif namespace Botan_Tests { #if defined(BOTAN_HAS_SIMD_32) class SIMD_32_Tests final : public Test { public: std::vector run() override { Test::Result result("SIMD_4x32"); if(Botan::CPUID::has_simd_32() == false) { result.test_note("Skipping SIMD_4x32 tests due to missing CPU support at runtime"); return {result}; } const uint32_t pat1 = 0xAABBCCDD; const uint32_t pat2 = 0x87654321; const uint32_t pat3 = 0x01234567; const uint32_t pat4 = 0xC0D0E0F0; test_eq(result, "default init", Botan::SIMD_4x32(), 0, 0, 0, 0); test_eq(result, "SIMD scalar constructor", Botan::SIMD_4x32(1, 2, 3, 4), 1, 2, 3, 4); const Botan::SIMD_4x32 splat = Botan::SIMD_4x32::splat(pat1); test_eq(result, "splat", splat, pat1, pat1, pat1, pat1); const Botan::SIMD_4x32 input(pat1, pat2, pat3, pat4); Botan::SIMD_4x32 rol = input.rotl<3>(); test_eq(result, "rotl", rol, Botan::rotl<3>(pat1), Botan::rotl<3>(pat2), Botan::rotl<3>(pat3), Botan::rotl<3>(pat4)); Botan::SIMD_4x32 ror = input.rotr<9>(); test_eq(result, "rotr", ror, Botan::rotr<9>(pat1), Botan::rotr<9>(pat2), Botan::rotr<9>(pat3), Botan::rotr<9>(pat4)); Botan::SIMD_4x32 add = input + splat; test_eq(result, "add +", add, pat1 + pat1, pat2 + pat1, pat3 + pat1, pat4 + pat1); add -= splat; test_eq(result, "sub -=", add, pat1, pat2, pat3, pat4); add += splat; test_eq(result, "add +=", add, pat1 + pat1, pat2 + pat1, pat3 + pat1, pat4 + pat1); test_eq(result, "xor", input ^ splat, 0, pat2 ^ pat1, pat3 ^ pat1, pat4 ^ pat1); test_eq(result, "or", input | splat, pat1, pat2 | pat1, pat3 | pat1, pat4 | pat1); test_eq(result, "and", input & splat, pat1, pat2 & pat1, pat3 & pat1, pat4 & pat1); Botan::SIMD_4x32 blender = input; blender |= splat; test_eq(result, "|=", blender, pat1, pat2 | pat1, pat3 | pat1, pat4 | pat1); blender &= splat; test_eq(result, "&=", blender, pat1, pat1, pat1, pat1); blender ^= splat; test_eq(result, "^=", blender, 0, 0, 0, 0); blender = ~blender; test_eq(result, "~", blender, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); blender = blender.shr<23>(); test_eq(result, ">>", blender, 0x1FF, 0x1FF, 0x1FF, 0x1FF); blender = blender.shl<27>(); test_eq(result, "<<", blender, 0xF8000000, 0xF8000000, 0xF8000000, 0xF8000000); blender = ~blender; test_eq(result, "~", blender, 0x7FFFFFF, 0x7FFFFFF, 0x7FFFFFF, 0x7FFFFFF); blender = input.andc(~blender); test_eq(result, "andc", blender, ~pat1 & 0xF8000000, ~pat2 & 0xF8000000, ~pat3 & 0xF8000000, ~pat4 & 0xF8000000); test_eq(result, "bswap", input.bswap(), Botan::reverse_bytes(pat1), Botan::reverse_bytes(pat2), Botan::reverse_bytes(pat3), Botan::reverse_bytes(pat4)); Botan::SIMD_4x32 t1(pat1, pat2, pat3, pat4); Botan::SIMD_4x32 t2(pat1 + 1, pat2 + 1, pat3 + 1, pat4 + 1); Botan::SIMD_4x32 t3(pat1 + 2, pat2 + 2, pat3 + 2, pat4 + 2); Botan::SIMD_4x32 t4(pat1 + 3, pat2 + 3, pat3 + 3, pat4 + 3); Botan::SIMD_4x32::transpose(t1, t2, t3, t4); test_eq(result, "transpose t1", t1, pat1, pat1 + 1, pat1 + 2, pat1 + 3); test_eq(result, "transpose t2", t2, pat2, pat2 + 1, pat2 + 2, pat2 + 3); test_eq(result, "transpose t3", t3, pat3, pat3 + 1, pat3 + 2, pat3 + 3); test_eq(result, "transpose t4", t4, pat4, pat4 + 1, pat4 + 2, pat4 + 3); return {result}; } private: void test_eq(Test::Result& result, const std::string& op, const Botan::SIMD_4x32& simd, uint32_t exp0, uint32_t exp1, uint32_t exp2, uint32_t exp3) { uint8_t arr_be[16 + 15]; uint8_t arr_be2[16 + 15]; uint8_t arr_le[16 + 15]; uint8_t arr_le2[16 + 15]; for(size_t misalignment = 0; misalignment != 16; ++misalignment) { uint8_t* mem_be = arr_be + misalignment; uint8_t* mem_be2 = arr_be2 + misalignment; uint8_t* mem_le = arr_le + misalignment; uint8_t* mem_le2 = arr_le2 + misalignment; simd.store_be(mem_be); result.test_int_eq("SIMD_4x32 " + op + " elem0 BE", Botan::make_uint32(mem_be[ 0], mem_be[ 1], mem_be[ 2], mem_be[ 3]), exp0); result.test_int_eq("SIMD_4x32 " + op + " elem1 BE", Botan::make_uint32(mem_be[ 4], mem_be[ 5], mem_be[ 6], mem_be[ 7]), exp1); result.test_int_eq("SIMD_4x32 " + op + " elem2 BE", Botan::make_uint32(mem_be[ 8], mem_be[ 9], mem_be[10], mem_be[11]), exp2); result.test_int_eq("SIMD_4x32 " + op + " elem3 BE", Botan::make_uint32(mem_be[12], mem_be[13], mem_be[14], mem_be[15]), exp3); // Check load_be+store_be results in same value const Botan::SIMD_4x32 reloaded_be = Botan::SIMD_4x32::load_be(mem_be); reloaded_be.store_be(mem_be2); result.test_eq(nullptr, "SIMD_4x32 load_be", mem_be, 16, mem_be2, 16); simd.store_le(mem_le); result.test_int_eq("SIMD_4x32 " + op + " elem0 LE", Botan::make_uint32(mem_le[ 3], mem_le[ 2], mem_le[ 1], mem_le[ 0]), exp0); result.test_int_eq("SIMD_4x32 " + op + " elem1 LE", Botan::make_uint32(mem_le[ 7], mem_le[ 6], mem_le[ 5], mem_le[ 4]), exp1); result.test_int_eq("SIMD_4x32 " + op + " elem2 LE", Botan::make_uint32(mem_le[11], mem_le[10], mem_le[ 9], mem_le[ 8]), exp2); result.test_int_eq("SIMD_4x32 " + op + " elem3 LE", Botan::make_uint32(mem_le[15], mem_le[14], mem_le[13], mem_le[12]), exp3); // Check load_le+store_le results in same value const Botan::SIMD_4x32 reloaded_le = Botan::SIMD_4x32::load_le(mem_le); reloaded_le.store_le(mem_le2); result.test_eq(nullptr, "SIMD_4x32 load_le", mem_le, 16, mem_le2, 16); } } }; BOTAN_REGISTER_TEST("simd_32", SIMD_32_Tests); #endif }