/************************************************* * RSA Source File * * (C) 1999-2006 The Botan Project * *************************************************/ #include #include #include #include namespace Botan { /************************************************* * RSA_PublicKey Constructor * *************************************************/ RSA_PublicKey::RSA_PublicKey(const BigInt& mod, const BigInt& exp) { n = mod; e = exp; X509_load_hook(); } /************************************************* * RSA Public Operation * *************************************************/ BigInt RSA_PublicKey::public_op(const BigInt& i) const { if(i >= n) throw Invalid_Argument(algo_name() + "::public_op: input is too large"); return core.public_op(i); } /************************************************* * RSA Encryption Function * *************************************************/ SecureVector RSA_PublicKey::encrypt(const byte in[], u32bit len) const { BigInt i(in, len); return BigInt::encode_1363(public_op(i), n.bytes()); } /************************************************* * RSA Verification Function * *************************************************/ SecureVector RSA_PublicKey::verify(const byte in[], u32bit len) const { BigInt i(in, len); return BigInt::encode(public_op(i)); } /************************************************* * Create a RSA private key * *************************************************/ RSA_PrivateKey::RSA_PrivateKey(u32bit bits, u32bit exp) { if(bits < 128) throw Invalid_Argument(algo_name() + ": Can't make a key that is only " + to_string(bits) + " bits long"); if(exp < 3 || exp % 2 == 0) throw Invalid_Argument(algo_name() + ": Invalid encryption exponent"); e = exp; p = random_prime((bits + 1) / 2, e); q = random_prime(bits - p.bits(), e); d = inverse_mod(e, lcm(p - 1, q - 1)); PKCS8_load_hook(); check_generated_private(); if(n.bits() != bits) throw Self_Test_Failure(algo_name() + " private key generation failed"); } /************************************************* * RSA_PrivateKey Constructor * *************************************************/ RSA_PrivateKey::RSA_PrivateKey(const BigInt& prime1, const BigInt& prime2, const BigInt& exp, const BigInt& d_exp, const BigInt& mod) { p = prime1; q = prime2; e = exp; d = d_exp; n = mod; if(d == 0) d = inverse_mod(e, lcm(p - 1, q - 1)); PKCS8_load_hook(); check_loaded_private(); } /************************************************* * RSA Private Operation * *************************************************/ BigInt RSA_PrivateKey::private_op(const byte in[], u32bit length) const { BigInt i(in, length); if(i >= n) throw Invalid_Argument(algo_name() + "::private_op: input is too large"); BigInt r = core.private_op(i); if(i != public_op(r)) throw Self_Test_Failure(algo_name() + " private operation check failed"); return r; } /************************************************* * RSA Decryption Operation * *************************************************/ SecureVector RSA_PrivateKey::decrypt(const byte in[], u32bit len) const { return BigInt::encode(private_op(in, len)); } /************************************************* * RSA Signature Operation * *************************************************/ SecureVector RSA_PrivateKey::sign(const byte in[], u32bit len) const { return BigInt::encode_1363(private_op(in, len), n.bytes()); } /************************************************* * Check Private RSA Parameters * *************************************************/ bool RSA_PrivateKey::check_key(bool strong) const { if(!IF_Scheme_PrivateKey::check_key(strong)) return false; if(!strong) return true; if((e * d) % lcm(p - 1, q - 1) != 1) return false; try { KeyPair::check_key(get_pk_encryptor(*this, "EME1(SHA-1)"), get_pk_decryptor(*this, "EME1(SHA-1)") ); KeyPair::check_key(get_pk_signer(*this, "EMSA4(SHA-1)"), get_pk_verifier(*this, "EMSA4(SHA-1)") ); } catch(Self_Test_Failure) { return false; } return true; } }