/* * Shanks-Tonnelli (RESSOL) * (C) 2007-2008 Falko Strenzke, FlexSecure GmbH * (C) 2008 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { /* * Shanks-Tonnelli algorithm */ BigInt ressol(const BigInt& a, const BigInt& p) { if(a < 0) throw Invalid_Argument("ressol(): a to solve for must be positive"); if(p <= 1) throw Invalid_Argument("ressol(): prime must be > 1"); if(a == 0) return 0; if(p == 2) return a; if(jacobi(a, p) != 1) // not a quadratic residue return -BigInt(1); if(p % 4 == 3) return power_mod(a, ((p+1) >> 2), p); u32bit s = low_zero_bits(p - 1); BigInt q = p >> s; q -= 1; q >>= 1; Modular_Reducer mod_p(p); BigInt r = power_mod(a, q, p); BigInt n = mod_p.multiply(a, mod_p.square(r)); r = mod_p.multiply(r, a); if(n == 1) return r; // find random non quadratic residue z BigInt z = 2; while(jacobi(z, p) == 1) // while z quadratic residue ++z; BigInt c = power_mod(z, (q << 1) + 1, p); while(n > 1) { q = n; u32bit i = 0; while(q != 1) { q = mod_p.square(q); ++i; } u32bit t = s; if(t <= i) return -BigInt(1); c = power_mod(c, BigInt(BigInt::Power2, t-i-1), p); r = mod_p.multiply(r, c); c = mod_p.square(c); n = mod_p.multiply(n, c); s = i; } return r; } }