/* * Arithmetic for point groups of elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #ifndef BOTAN_POINT_GFP_H__ #define BOTAN_POINT_GFP_H__ #include #include namespace Botan { struct BOTAN_DLL Illegal_Transformation : public Exception { Illegal_Transformation(const std::string& err = "Requested transformation is not possible") : Exception(err) {} }; struct BOTAN_DLL Illegal_Point : public Exception { Illegal_Point(const std::string& err = "Malformed ECP point detected") : Exception(err) {} }; /** * This class represents one point on a curve of GF(p) */ class BOTAN_DLL PointGFp { public: enum Compression_Type { UNCOMPRESSED = 0, COMPRESSED = 1, HYBRID = 2 }; /** * Construct an uninitialized PointGFp */ PointGFp() {} /** * Construct the point O * @param curve The base curve */ PointGFp(const CurveGFp& curve) : curve(curve), coord_x(0), coord_y(1), coord_z(0) {} /** * Construct a point given its affine coordinates * @param curve the base curve * @param x affine x coordinate * @param y affine y coordinate */ PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : curve(curve), coord_x(x), coord_y(y), coord_z(1) {} /** * Construct a point given its jacobian projective coordinates * @param curve the base curve * @param x jacobian projective x coordinate * @param y jacobian projective y coordinate * @param z jacobian projective z coordinate */ PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y, const BigInt& z) : curve(curve), coord_x(x), coord_y(y), coord_z(z) {} //PointGFp(const PointGFp& other) = default; //PointGFp& operator=(const PointGFp& other) = default; /** * += Operator * @param rhs the PointGFp to add to the local value * @result resulting PointGFp */ PointGFp& operator+=(const PointGFp& rhs); /** * -= Operator * @param rhs the PointGFp to subtract from the local value * @result resulting PointGFp */ PointGFp& operator-=(const PointGFp& rhs); /** * *= Operator * This function turns on the the special reduction multiplication * itself for fast computation, turns it off again when finished. * @param scalar the PointGFp to multiply with *this * @result resulting PointGFp */ PointGFp& operator*=(const BigInt& scalar); /** * Negate this point * @return *this */ PointGFp& negate() { if(!is_zero()) coord_y = curve.get_p() - coord_y; return *this; } /** * Return base curve of this point * @result the curve over GF(p) of this point */ const CurveGFp& get_curve() const { return curve; } /** * get affine x coordinate * @result affine x coordinate */ BigInt get_affine_x() const; /** * get affine y coordinate * @result affine y coordinate */ BigInt get_affine_y() const; /** * get the jacobian projective x coordinate * @result jacobian projective x coordinate */ const BigInt& get_x() const { return coord_x; } /** * get the jacobian projective y coordinate * @result jacobian projective y coordinate */ const BigInt& get_y() const { return coord_y; } /** * get the jacobian projective z coordinate * @result jacobian projective z coordinate */ const BigInt& get_z() const { return coord_z; } /** * Is this the point at infinity? * @result true, if this point is at infinity, false otherwise. */ bool is_zero() const { return (coord_x.is_zero() && coord_z.is_zero()); } /** * Checks whether the point is to be found on the underlying curve. * Throws an Invalid_Point exception in case of detecting that the point * does not satisfy the curve equation. * To be used to ensure against fault attacks. */ void check_invariants() const; /** * swaps the states of *this and other, does not throw! * @param other the object to swap values with */ void swap(PointGFp& other); /** * Equality operator */ bool operator==(const PointGFp& other) const; private: /** * Point doubling */ void mult2(); CurveGFp curve; BigInt coord_x, coord_y, coord_z; }; // relational operators inline bool operator!=(const PointGFp& lhs, const PointGFp& rhs) { return !(rhs == lhs); } // arithmetic operators inline PointGFp operator-(const PointGFp& lhs) { return PointGFp(lhs).negate(); } inline PointGFp operator+(const PointGFp& lhs, const PointGFp& rhs) { PointGFp tmp(lhs); return tmp += rhs; } inline PointGFp operator-(const PointGFp& lhs, const PointGFp& rhs) { PointGFp tmp(lhs); return tmp -= rhs; } inline PointGFp operator*(const BigInt& scalar, const PointGFp& point) { PointGFp result(point); return result *= scalar; } inline PointGFp operator*(const PointGFp& point, const BigInt& scalar) { PointGFp result(point); return result *= scalar; } // encoding and decoding SecureVector BOTAN_DLL EC2OSP(const PointGFp& point, byte format); PointGFp BOTAN_DLL OS2ECP(const byte data[], u32bit data_len, const CurveGFp& curve); inline PointGFp OS2ECP(const MemoryRegion& data, const CurveGFp& curve) { return OS2ECP(&data[0], data.size(), curve); } } namespace std { template<> inline void swap(Botan::PointGFp& x, Botan::PointGFp& y) { x.swap(y); } } #endif