/* * Arithmetic for point groups of elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const CurveGFp& curve) { BigInt xpow3 = x * x * x; BigInt g = curve.get_a() * x; g += xpow3; g += curve.get_b(); g = g % curve.get_p(); BigInt z = ressol(g, curve.get_p()); if(z < 0) throw Illegal_Point("error during decompression"); if(z.get_bit(0) != yMod2) z = curve.get_p() - z; return z; } } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { if(rhs.is_zero()) return *this; if(is_zero()) { *this = rhs; return *this; } const Modular_Reducer& mod_p = curve.mod_p(); BigInt rhs_z2 = mod_p.square(rhs.coord_z); BigInt U1 = mod_p.multiply(coord_x, rhs_z2); BigInt S1 = mod_p.multiply(coord_y, mod_p.multiply(rhs.coord_z, rhs_z2)); BigInt lhs_z2 = mod_p.square(coord_z); BigInt U2 = mod_p.multiply(rhs.coord_x, lhs_z2); BigInt S2 = mod_p.multiply(rhs.coord_y, mod_p.multiply(coord_z, lhs_z2)); BigInt H = mod_p.reduce(U2 - U1); BigInt r = mod_p.reduce(S2 - S1); if(H.is_zero()) { if(r.is_zero()) { mult2(); return *this; } *this = PointGFp(curve); // setting myself to zero return *this; } U2 = mod_p.square(H); S2 = mod_p.multiply(U2, H); U2 = mod_p.multiply(U1, U2); BigInt x = mod_p.reduce(mod_p.square(r) - S2 - mod_p.multiply(2, U2)); BigInt y = mod_p.reduce(mod_p.multiply(r, (U2-x)) - mod_p.multiply(S1, S2)); BigInt z = mod_p.multiply(mod_p.multiply(coord_z, rhs.coord_z), H); coord_x = x; coord_y = y; coord_z = z; return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { if(scalar.abs() <= 2) // special cases for small values { u32bit value = scalar.abs().to_u32bit(); if(value == 0) *this = PointGFp(curve); // set to zero point else if(value == 1) { if(scalar.is_negative()) this->negate(); } else if(value == 2) { this->mult2(); if(scalar.is_negative()) this->negate(); } return *this; } PointGFp H(this->curve); // create as zero PointGFp P(*this); if(scalar.is_negative()) P.negate(); for(int i = scalar.bits() - 1; i >= 0; --i) { H.mult2(); if(scalar.get_bit(i)) H += P; } if(!H.is_zero()) // cannot convert if H == O { /** * Convert H to an equivalent point with z == 1, thus x and y * correspond to their affine coordinates */ if(H.coord_z != 1) { const Modular_Reducer& mod_p = curve.mod_p(); BigInt z_inv = inverse_mod(H.coord_z, curve.get_p()); BigInt z_inv_2 = mod_p.square(z_inv); H.coord_x = mod_p.multiply(H.coord_x, z_inv_2); H.coord_y = mod_p.multiply(H.coord_y, mod_p.multiply(z_inv, z_inv_2)); H.coord_z = 1; } } *this = H; return *this; } // *this *= 2 void PointGFp::mult2() { if(is_zero()) return; else if(coord_y.is_zero()) { *this = PointGFp(curve); // setting myself to zero return; } const Modular_Reducer& mod_p = curve.mod_p(); BigInt y_2 = mod_p.square(coord_y); BigInt S = mod_p.multiply(4, mod_p.multiply(coord_x, y_2)); BigInt a_z4 = mod_p.multiply(curve.get_a(), mod_p.square(mod_p.square(coord_z))); BigInt M = mod_p.reduce(a_z4 + 3 * mod_p.square(coord_x)); BigInt x = mod_p.reduce(mod_p.square(M) - mod_p.multiply(2, S)); BigInt U = mod_p.multiply(8, mod_p.square(y_2)); BigInt y = mod_p.reduce(mod_p.multiply(M, S - x) - U); BigInt z = mod_p.multiply(2, mod_p.multiply(coord_y, coord_z)); coord_x = x; coord_y = y; coord_z = z; } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); BigInt z2 = mod_p.square(coord_z); return mod_p.multiply(coord_x, inverse_mod(z2, curve.get_p())); } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); BigInt z3 = mod_p.cube(coord_z); return mod_p.multiply(coord_y, inverse_mod(z3, curve.get_p())); } void PointGFp::check_invariants() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return silently. If Oskar managed to corrupt this object's state, then it will throw an exception.) */ if(is_zero()) return; const Modular_Reducer& mod_p = curve.mod_p(); BigInt y2 = mod_p.square(coord_y); BigInt x3 = mod_p.cube(coord_x); BigInt ax = mod_p.multiply(coord_x, curve.get_a()); if(coord_z == 1) { if(mod_p.reduce(x3 + ax + curve.get_b()) != y2) throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x + b"); } BigInt z2 = mod_p.square(coord_z); BigInt z3 = mod_p.multiply(coord_z, z2); BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, coord_z), ax); BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3)); if(y2 != mod_p.reduce(x3 + ax_z4 + b_z6)) throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x*z^4 + b*z^6"); } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { curve.swap(other.curve); coord_x.swap(other.coord_x); coord_y.swap(other.coord_y); coord_z.swap(other.coord_z); } bool PointGFp::operator==(const PointGFp& other) const { return (coord_x == other.coord_x && coord_y == other.coord_y && coord_z == other.coord_z && get_curve() == other.get_curve()); } // encoding and decoding SecureVector EC2OSP(const PointGFp& point, byte format) { if(point.is_zero()) return SecureVector(1); // single 0 byte const u32bit p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); SecureVector bX = BigInt::encode_1363(x, p_bytes); SecureVector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { SecureVector result(2*p_bytes+1); result[0] = 4; result.copy(1, bX.begin(), p_bytes); result.copy(p_bytes+1, bY.begin(), p_bytes); return result; } else if(format == PointGFp::COMPRESSED) { SecureVector result(p_bytes+1); result[0] = 2; result.copy(1, bX.begin(), bX.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else if(format == PointGFp::HYBRID) { SecureVector result(2*p_bytes+1); result[0] = 6; result.copy(1, bX.begin(), bX.size()); result.copy(p_bytes+1, bY.begin(), bY.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else throw Invalid_Argument("illegal point encoding format specification"); } PointGFp OS2ECP(const byte data[], u32bit data_len, const CurveGFp& curve) { if(data_len <= 1) return PointGFp(curve); // return zero const byte pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); bool yMod2 = ((pc & 0x01) == 1); y = decompress_point(yMod2, x, curve); } else if(pc == 4) { const u32bit l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const u32bit l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); bool yMod2 = ((pc & 0x01) == 1); if(decompress_point(yMod2, x, curve) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type"); PointGFp result(curve, x, y); result.check_invariants(); return result; } }