/* * Arithmetic for point groups of elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : curve(curve), coord_x(0), coord_y(curve.get_r()), coord_z(0) { } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : curve(curve) { const Modular_Reducer& mod_p = curve.mod_p(); coord_x = mod_p.multiply(curve.get_r(), x); coord_y = mod_p.multiply(curve.get_r(), y); coord_z = mod_p.reduce(curve.get_r()); } BigInt PointGFp::monty_mult(const BigInt& a, const BigInt& b, MemoryRegion& workspace) { if(a.is_zero() || b.is_zero()) return 0; const BigInt& p = curve.get_p(); const u32bit p_size = p.sig_words(); const word p_dash = curve.get_p_dash(); workspace.clear(); bigint_mul(workspace, workspace.size(), 0, a.data(), a.size(), a.sig_words(), b.data(), b.size(), b.sig_words()); bigint_monty_redc(workspace, workspace.size(), p.data(), p_size, p_dash); BigInt result; result.grow_to(p_size); copy_mem(result.get_reg().begin(), &workspace[p_size], p_size); return result; } BigInt PointGFp::monty_sqr(const BigInt& x, MemoryRegion& workspace) { if(x.is_zero()) return 0; const BigInt& p = curve.get_p(); const u32bit p_size = p.sig_words(); const word p_dash = curve.get_p_dash(); workspace.clear(); bigint_sqr(workspace, workspace.size(), 0, x.data(), x.size(), x.sig_words()); bigint_monty_redc(workspace, workspace.size(), p.data(), p_size, p_dash); BigInt result; result.grow_to(p_size); copy_mem(result.get_reg().begin(), &workspace[p_size], p_size); return result; } void PointGFp::add(const PointGFp& rhs, Workspace& workspace) { if(is_zero()) { coord_x = rhs.coord_x; coord_y = rhs.coord_y; coord_z = rhs.coord_z; return; } else if(rhs.is_zero()) return; MemoryRegion& ws = workspace.ws_monty; std::vector& ws_bn = workspace.ws_bn; const Modular_Reducer& mod_p = curve.mod_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; BigInt& x = ws_bn[8]; BigInt& y = ws_bn[9]; BigInt& z = ws_bn[10]; rhs_z2 = monty_sqr(rhs.coord_z, ws); U1 = monty_mult(coord_x, rhs_z2, ws); S1 = monty_mult(coord_y, monty_mult(rhs.coord_z, rhs_z2, ws), ws); lhs_z2 = monty_sqr(coord_z, ws); U2 = monty_mult(rhs.coord_x, lhs_z2, ws); S2 = monty_mult(rhs.coord_y, monty_mult(coord_z, lhs_z2, ws), ws); H = mod_p.reduce(U2 - U1); r = mod_p.reduce(S2 - S1); if(H.is_zero()) { if(r.is_zero()) { mult2(workspace); return; } *this = PointGFp(curve); // setting myself to zero return; } U2 = monty_sqr(H, ws); S2 = monty_mult(U2, H, ws); U2 = monty_mult(U1, U2, ws); x = mod_p.reduce(monty_sqr(r, ws) - S2 - U2*2); U2 -= x; if(U2.is_negative()) U2 += curve.get_p(); y = monty_mult(r, U2, ws) - monty_mult(S1, S2, ws); if(y.is_negative()) y += curve.get_p(); z = monty_mult(monty_mult(coord_z, rhs.coord_z, ws), H, ws); coord_x = x; coord_y = y; coord_z = z; } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { Workspace ws(curve.get_p().sig_words()); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { Workspace ws(curve.get_p().sig_words()); if(scalar.abs() <= 2) // special cases for small values { u32bit value = scalar.abs().to_u32bit(); if(value == 0) *this = PointGFp(curve); // set to zero point else if(value == 1) { if(scalar.is_negative()) this->negate(); } else if(value == 2) { this->mult2(ws); if(scalar.is_negative()) this->negate(); } return *this; } PointGFp H(this->curve); // create as zero PointGFp P(*this); if(scalar.is_negative()) P.negate(); u32bit scalar_bits = scalar.bits(); PointGFp P2 = P * 2; PointGFp P3 = P2 + P; for(u32bit i = 0; i < scalar_bits - 1; i += 2) { u32bit nibble = scalar.get_substring(scalar_bits - i - 2, 2); H.mult2(ws); H.mult2(ws); if(nibble == 3) H.add(P3, ws); else if(nibble == 2) H.add(P2, ws); else if(nibble == 1) H.add(P, ws); } if(scalar_bits % 2) { H.mult2(ws); if(scalar.get_bit(0)) H.add(P, ws); } *this = H; return *this; } // *this *= 2 void PointGFp::mult2(Workspace& workspace) { if(is_zero()) return; else if(coord_y.is_zero()) { *this = PointGFp(curve); // setting myself to zero return; } MemoryRegion& ws = workspace.ws_monty; std::vector& ws_bn = workspace.ws_bn; const Modular_Reducer& mod_p = curve.mod_p(); BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; BigInt& z4 = ws_bn[2]; BigInt& a_z4 = ws_bn[3]; BigInt& M = ws_bn[4]; BigInt& U = ws_bn[5]; BigInt& x = ws_bn[6]; BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; y_2 = monty_sqr(coord_y, ws); S = mod_p.reduce(4 * monty_mult(coord_x, y_2, ws)); z4 = monty_sqr(monty_sqr(coord_z, ws), ws); a_z4 = monty_mult(curve.get_a_r(), z4, ws); M = mod_p.reduce(a_z4 + 3 * monty_sqr(coord_x, ws)); x = mod_p.reduce(monty_sqr(M, ws) - 2*S); U = mod_p.reduce(monty_sqr(y_2, ws) << 3); S -= x; while(S.is_negative()) S += curve.get_p(); y = monty_mult(M, S, ws) - U; if(y.is_negative()) y += curve.get_p(); z = 2 * monty_mult(coord_y, coord_z, ws); if(z >= curve.get_p()) z -= curve.get_p(); coord_x = x; coord_y = y; coord_z = z; } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt z2 = mod_p.square(z); return mod_p.multiply(x, inverse_mod(z2, curve.get_p())); } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt z3 = mod_p.cube(z); return mod_p.multiply(y, inverse_mod(z3, curve.get_p())); } void PointGFp::check_invariants() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return silently. If Oskar managed to corrupt this object's state, then it will throw an exception.) */ if(is_zero()) return; const Modular_Reducer& mod_p = curve.mod_p(); BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt y2 = mod_p.square(y); BigInt x3 = mod_p.cube(x); BigInt ax = mod_p.multiply(x, curve.get_a()); if(z == 1) { if(mod_p.reduce(x3 + ax + curve.get_b()) != y2) throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x + b"); } BigInt z2 = mod_p.square(z); BigInt z3 = mod_p.multiply(z, z2); BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, z), ax); BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3)); if(y2 != mod_p.reduce(x3 + ax_z4 + b_z6)) throw Illegal_Point("Invalid ECP point: y^2 != x^3 + a*x*z^4 + b*z^6"); } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { curve.swap(other.curve); coord_x.swap(other.coord_x); coord_y.swap(other.coord_y); coord_z.swap(other.coord_z); } bool PointGFp::operator==(const PointGFp& other) const { if(get_curve() != other.get_curve()) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding SecureVector EC2OSP(const PointGFp& point, byte format) { if(point.is_zero()) return SecureVector(1); // single 0 byte const u32bit p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); SecureVector bX = BigInt::encode_1363(x, p_bytes); SecureVector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { SecureVector result(2*p_bytes+1); result[0] = 4; result.copy(1, bX.begin(), p_bytes); result.copy(p_bytes+1, bY.begin(), p_bytes); return result; } else if(format == PointGFp::COMPRESSED) { SecureVector result(p_bytes+1); result[0] = 2; result.copy(1, bX.begin(), bX.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else if(format == PointGFp::HYBRID) { SecureVector result(2*p_bytes+1); result[0] = 6; result.copy(1, bX.begin(), bX.size()); result.copy(p_bytes+1, bY.begin(), bY.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else throw Invalid_Argument("illegal point encoding format specification"); } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const CurveGFp& curve) { BigInt xpow3 = x * x * x; BigInt g = curve.get_a() * x; g += xpow3; g += curve.get_b(); g = g % curve.get_p(); BigInt z = ressol(g, curve.get_p()); if(z < 0) throw Illegal_Point("error during decompression"); if(z.get_bit(0) != yMod2) z = curve.get_p() - z; return z; } } PointGFp OS2ECP(const byte data[], u32bit data_len, const CurveGFp& curve) { if(data_len <= 1) return PointGFp(curve); // return zero const byte pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); bool yMod2 = ((pc & 0x01) == 1); y = decompress_point(yMod2, x, curve); } else if(pc == 4) { const u32bit l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const u32bit l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); bool yMod2 = ((pc & 0x01) == 1); if(decompress_point(yMod2, x, curve) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type"); PointGFp result(curve, x, y); result.check_invariants(); return result; } }