/* * Arithmetic for point groups of elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : curve(curve), coord_x(0), coord_y(curve.get_r()), coord_z(0) { } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : curve(curve) { const Modular_Reducer& mod_p = curve.mod_p(); coord_x = mod_p.multiply(curve.get_r(), x); coord_y = mod_p.multiply(curve.get_r(), y); coord_z = mod_p.reduce(curve.get_r()); } // Montgomery multiplication void PointGFp::monty_mult(BigInt& z, const BigInt& x, const BigInt& y, MemoryRegion& workspace) const { if(x.is_zero() || y.is_zero()) { z = 0; return; } const BigInt& p = curve.get_p(); const u32bit p_size = curve.get_p_words(); const word p_dash = curve.get_p_dash(); zeroise(workspace); bigint_mul(workspace, workspace.size(), 0, x.data(), x.size(), x.sig_words(), y.data(), y.size(), y.sig_words()); bigint_monty_redc(workspace, workspace.size(), p.data(), p_size, p_dash); z.get_reg().resize(p_size); copy_mem(z.get_reg().begin(), &workspace[p_size], p_size); } // Montgomery squaring void PointGFp::monty_sqr(BigInt& z, const BigInt& x, MemoryRegion& workspace) const { if(x.is_zero()) { z = 0; return; } const BigInt& p = curve.get_p(); const u32bit p_size = curve.get_p_words(); const word p_dash = curve.get_p_dash(); zeroise(workspace); bigint_sqr(workspace, workspace.size(), 0, x.data(), x.size(), x.sig_words()); bigint_monty_redc(workspace, workspace.size(), p.data(), p_size, p_dash); z.get_reg().resize(p_size); copy_mem(z.get_reg().begin(), &workspace[p_size], p_size); } // Point addition void PointGFp::add(const PointGFp& rhs, Workspace& workspace) { if(is_zero()) { coord_x = rhs.coord_x; coord_y = rhs.coord_y; coord_z = rhs.coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = curve.get_p(); MemoryRegion& ws = workspace.ws_monty; std::vector& ws_bn = workspace.ws_bn; BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; BigInt& x = ws_bn[8]; BigInt& y = ws_bn[9]; BigInt& z = ws_bn[10]; monty_sqr(rhs_z2, rhs.coord_z, ws); monty_mult(U1, coord_x, rhs_z2, ws); monty_mult(S1, coord_y, monty_mult(rhs.coord_z, rhs_z2, ws), ws); monty_sqr(lhs_z2, coord_z, ws); monty_mult(U2, rhs.coord_x, lhs_z2, ws); monty_mult(S2, rhs.coord_y, monty_mult(coord_z, lhs_z2, ws), ws); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(workspace); return; } *this = PointGFp(curve); // setting myself to zero return; } monty_sqr(U2, H, ws); monty_mult(S2, U2, H, ws); monty_mult(U2, U1, U2, ws); monty_sqr(x, r, ws); x -= S2; x -= (U2 << 1); while(x.is_negative()) x += p; U2 -= x; if(U2.is_negative()) U2 += p; monty_mult(y, r, U2, ws); y -= monty_mult(S1, S2, ws); if(y.is_negative()) y += p; monty_mult(z, monty_mult(coord_z, rhs.coord_z, ws), H, ws); coord_x = x; coord_y = y; coord_z = z; } // *this *= 2 void PointGFp::mult2(Workspace& workspace) { if(is_zero()) return; else if(coord_y.is_zero()) { *this = PointGFp(curve); // setting myself to zero return; } const BigInt& p = curve.get_p(); MemoryRegion& ws = workspace.ws_monty; std::vector& ws_bn = workspace.ws_bn; BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; BigInt& z4 = ws_bn[2]; BigInt& a_z4 = ws_bn[3]; BigInt& M = ws_bn[4]; BigInt& U = ws_bn[5]; BigInt& x = ws_bn[6]; BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; monty_sqr(y_2, coord_y, ws); monty_mult(S, coord_x, y_2, ws); S <<= 2; // * 4 while(S >= p) S -= p; monty_sqr(z4, monty_sqr(coord_z, ws), ws); monty_mult(a_z4, curve.get_a_r(), z4, ws); M = 3 * monty_sqr(coord_x, ws); M += a_z4; while(M >= p) M -= p; monty_sqr(x, M, ws); x -= (S << 1); while(x.is_negative()) x += p; monty_sqr(U, y_2, ws); U <<= 3; while(U >= p) U -= p; S -= x; while(S.is_negative()) S += p; monty_mult(y, M, S, ws); y -= U; if(y.is_negative()) y += p; monty_mult(z, coord_y, coord_z, ws); z <<= 1; if(z >= p) z -= p; coord_x = x; coord_y = y; coord_z = z; } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { Workspace ws(curve.get_p_words()); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { *this = scalar * *this; return *this; } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { const CurveGFp& curve = point.get_curve(); if(scalar.is_zero()) return PointGFp(curve); // zero point PointGFp::Workspace ws(curve.get_p_words()); if(scalar.abs() <= 2) // special cases for small values { u32bit value = scalar.abs().to_u32bit(); PointGFp result = point; if(value == 2) result.mult2(ws); if(scalar.is_negative()) result.negate(); return result; } const u32bit scalar_bits = scalar.bits(); const u32bit window_size = 4; std::vector Ps((1 << window_size) - 1); Ps[0] = point; for(u32bit i = 1; i != Ps.size(); ++i) { Ps[i] = Ps[i-1]; if(i % 1 == 1) Ps[i].mult2(ws); else Ps[i].add(Ps[0], ws); } PointGFp H(curve); // create as zero u32bit bits_left = scalar_bits; while(bits_left >= window_size) { u32bit nibble = scalar.get_substring(bits_left - window_size, window_size); for(u32bit i = 0; i != window_size; ++i) H.mult2(ws); if(nibble) H.add(Ps[nibble-1], ws); bits_left -= window_size; } while(bits_left) { H.mult2(ws); if(scalar.get_bit(bits_left-1)) H.add(Ps[0], ws); --bits_left; } if(scalar.is_negative()) H.negate(); return H; } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); #if 1 BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt z2 = mod_p.square(z); return mod_p.multiply(x, inverse_mod(z2, curve.get_p())); #else SecureVector ws(2 * (curve.get_p_words() + 2)); BigInt z2 = monty_sqr(coord_z, ws); z2 = inverse_mod(z2, curve.get_p()); z2 = mod_p.multiply(z2, curve.get_r()); return monty_mult(coord_x, z2, ws); #endif } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const Modular_Reducer& mod_p = curve.mod_p(); #if 1 BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt z3 = mod_p.cube(z); return mod_p.multiply(y, inverse_mod(z3, curve.get_p())); #else SecureVector ws(2 * (curve.get_p_words() + 2)); BigInt z3 = monty_mult(coord_z, monty_sqr(coord_z, ws), ws); z3 = inverse_mod(z3, curve.get_p()); z3 = mod_p.multiply(z3, curve.get_r()); return monty_mult(coord_y, z3, ws); #endif } bool PointGFp::on_the_curve() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return true. If somehow the state is corrupted, which suggests a fault attack (or internal computational error), then return false. */ if(is_zero()) return true; const Modular_Reducer& mod_p = curve.mod_p(); BigInt x = mod_p.multiply(curve.get_r_inv(), coord_x); BigInt y = mod_p.multiply(curve.get_r_inv(), coord_y); BigInt z = mod_p.multiply(curve.get_r_inv(), coord_z); BigInt y2 = mod_p.square(y); BigInt x3 = mod_p.cube(x); BigInt ax = mod_p.multiply(x, curve.get_a()); if(z == 1) { if(mod_p.reduce(x3 + ax + curve.get_b()) != y2) return false; } BigInt z2 = mod_p.square(z); BigInt z3 = mod_p.multiply(z, z2); BigInt ax_z4 = mod_p.multiply(mod_p.multiply(z3, z), ax); BigInt b_z6 = mod_p.multiply(curve.get_b(), mod_p.square(z3)); if(y2 != mod_p.reduce(x3 + ax_z4 + b_z6)) return false; return true; } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { curve.swap(other.curve); coord_x.swap(other.coord_x); coord_y.swap(other.coord_y); coord_z.swap(other.coord_z); } bool PointGFp::operator==(const PointGFp& other) const { if(get_curve() != other.get_curve()) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding SecureVector EC2OSP(const PointGFp& point, byte format) { if(point.is_zero()) return SecureVector(1); // single 0 byte const u32bit p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); SecureVector bX = BigInt::encode_1363(x, p_bytes); SecureVector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { SecureVector result(2*p_bytes+1); result[0] = 4; result.copy(1, bX.begin(), p_bytes); result.copy(p_bytes+1, bY.begin(), p_bytes); return result; } else if(format == PointGFp::COMPRESSED) { SecureVector result(p_bytes+1); result[0] = 2; result.copy(1, bX.begin(), bX.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else if(format == PointGFp::HYBRID) { SecureVector result(2*p_bytes+1); result[0] = 6; result.copy(1, bX.begin(), bX.size()); result.copy(p_bytes+1, bY.begin(), bY.size()); if(y.get_bit(0)) result[0] |= 1; return result; } else throw Invalid_Argument("illegal point encoding format specification"); } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const CurveGFp& curve) { BigInt xpow3 = x * x * x; BigInt g = curve.get_a() * x; g += xpow3; g += curve.get_b(); g = g % curve.get_p(); BigInt z = ressol(g, curve.get_p()); if(z < 0) throw Illegal_Point("error during decompression"); if(z.get_bit(0) != yMod2) z = curve.get_p() - z; return z; } } PointGFp OS2ECP(const byte data[], u32bit data_len, const CurveGFp& curve) { if(data_len <= 1) return PointGFp(curve); // return zero const byte pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); bool yMod2 = ((pc & 0x01) == 1); y = decompress_point(yMod2, x, curve); } else if(pc == 4) { const u32bit l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const u32bit l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); bool yMod2 = ((pc & 0x01) == 1); if(decompress_point(yMod2, x, curve) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type"); PointGFp result(curve, x, y); if(!result.on_the_curve()) throw Illegal_Point("OS2ECP: Decoded point was not on the curve"); return result; } }