/* * Number Theory Functions * (C) 1999-2007 Jack Lloyd * * Distributed under the terms of the Botan license */ #ifndef BOTAN_NUMBER_THEORY_H__ #define BOTAN_NUMBER_THEORY_H__ #include #include #include namespace Botan { /** * Fused multiply-add * @param a an integer * @param b an integer * @param c an integer * @return (a*b)+c */ BigInt BOTAN_DLL mul_add(const BigInt& a, const BigInt& b, const BigInt& c); /** * Fused subtract-multiply * @param a an integer * @param b an integer * @param c an integer * @return (a-b)*c */ BigInt BOTAN_DLL sub_mul(const BigInt& a, const BigInt& b, const BigInt& c); /** * Return the absolute value * @param n an integer * @return absolute value of n */ inline BigInt abs(const BigInt& n) { return n.abs(); } /** * Compute the greatest common divisor * @param x a positive integer * @param y a positive integer * @return gcd(x,y) */ BigInt BOTAN_DLL gcd(const BigInt& x, const BigInt& y); /** * Least common multiple * @param x a positive integer * @param y a positive integer * @return z, smallest integer such that z % x == 0 and z % y == 0 */ BigInt BOTAN_DLL lcm(const BigInt& x, const BigInt& y); /** * @param x an integer * @return (x*x) */ BigInt BOTAN_DLL square(const BigInt& x); /** * Modular inversion * @param x a positive integer * @param modulus a positive integer * @return y st (x*y) % modulus == 1 */ BigInt BOTAN_DLL inverse_mod(const BigInt& x, const BigInt& modulus); /** * Compute the Jacobi symbol. If n is prime, this is equivalent * to the Legendre symbol. * @see http://mathworld.wolfram.com/JacobiSymbol.html * * @param a is a non-negative integer * @param n is an odd integer > 1 * @return (n / m) */ s32bit BOTAN_DLL jacobi(const BigInt& a, const BigInt& n); /** * Modular exponentation * @param b an integer base * @param x a positive exponent * @param m a positive modulus * @return (b^x) % m */ BigInt BOTAN_DLL power_mod(const BigInt& b, const BigInt& x, const BigInt& m); /** * Compute the square root of x modulo a prime using the * Shanks-Tonnelli algorithm * * @param x the input * @param p the prime * @return y such that (y*y)%p == x, or -1 if no such integer */ BigInt BOTAN_DLL ressol(const BigInt& x, const BigInt& p); /** * @param x an integer * @return count of the zero bits in x, or, equivalently, the largest * value of n such that 2^n divides x evently */ size_t BOTAN_DLL low_zero_bits(const BigInt& x); /** * Primality Testing * @param n a positive integer to test for primality * @param rng a random number generator * @param level how hard to test * @return true if all primality tests passed, otherwise false */ bool BOTAN_DLL primality_test(const BigInt& n, RandomNumberGenerator& rng, size_t level = 1); /** * Quickly check for primality * @param n a positive integer to test for primality * @param rng a random number generator * @return true if all primality tests passed, otherwise false */ inline bool quick_check_prime(const BigInt& n, RandomNumberGenerator& rng) { return primality_test(n, rng, 0); } /** * Check for primality * @param n a positive integer to test for primality * @param rng a random number generator * @return true if all primality tests passed, otherwise false */ inline bool check_prime(const BigInt& n, RandomNumberGenerator& rng) { return primality_test(n, rng, 1); } /** * Verify primality - this function is slow but useful if you want to * ensure that a possibly malicious entity did not provide you with * something that 'looks like' a prime * @param n a positive integer to test for primality * @param rng a random number generator * @return true if all primality tests passed, otherwise false */ inline bool verify_prime(const BigInt& n, RandomNumberGenerator& rng) { return primality_test(n, rng, 2); } /** * Randomly generate a prime * @param rng a random number generator * @param bits how large the resulting prime should be in bits * @param coprime a positive integer the result should be coprime to * @param equiv a non-negative number that the result should be equivalent to modulo equiv_mod * @param equiv_mod the modulus equiv should be checked against * @return random prime with the specified criteria */ BigInt BOTAN_DLL random_prime(RandomNumberGenerator& rng, size_t bits, const BigInt& coprime = 1, size_t equiv = 1, size_t equiv_mod = 2); /** * Return a 'safe' prime, of the form p=2*q+1 with q prime * @param rng a random number generator * @param bits is how long the resulting prime should be * @return prime randomly chosen from safe primes of length bits */ BigInt BOTAN_DLL random_safe_prime(RandomNumberGenerator& rng, size_t bits); class Algorithm_Factory; /** * Generate DSA parameters using the FIPS 186 kosherizer * @param rng a random number generator * @param af an algorithm factory * @param p_out where the prime p will be stored * @param q_out where the prime q will be stored * @param pbits how long p will be in bits * @param qbits how long q will be in bits * @return random seed used to generate this parameter set */ SecureVector BOTAN_DLL generate_dsa_primes(RandomNumberGenerator& rng, Algorithm_Factory& af, BigInt& p_out, BigInt& q_out, size_t pbits, size_t qbits); /** * Generate DSA parameters using the FIPS 186 kosherizer * @param rng a random number generator * @param af an algorithm factory * @param p_out where the prime p will be stored * @param q_out where the prime q will be stored * @param pbits how long p will be in bits * @param qbits how long q will be in bits * @param seed the seed used to generate the parameters * @return true if seed generated a valid DSA parameter set, otherwise false. p_out and q_out are only valid if true was returned. */ bool BOTAN_DLL generate_dsa_primes(RandomNumberGenerator& rng, Algorithm_Factory& af, BigInt& p_out, BigInt& q_out, size_t pbits, size_t qbits, const MemoryRegion& seed); /** * The size of the PRIMES[] array */ const size_t PRIME_TABLE_SIZE = 6541; /** * A const array of all primes less than 65535 */ extern const u16bit BOTAN_DLL PRIMES[]; } #endif