/* * Prime Generation * (C) 1999-2007 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include namespace Botan { /* * Generate a random prime */ BigInt random_prime(RandomNumberGenerator& rng, u32bit bits, const BigInt& coprime, u32bit equiv, u32bit modulo) { if(bits <= 1) throw Invalid_Argument("random_prime: Can't make a prime of " + std::to_string(bits) + " bits"); else if(bits == 2) return ((rng.next_byte() % 2) ? 2 : 3); else if(bits == 3) return ((rng.next_byte() % 2) ? 5 : 7); else if(bits == 4) return ((rng.next_byte() % 2) ? 11 : 13); if(coprime <= 0) throw Invalid_Argument("random_prime: coprime must be > 0"); if(modulo % 2 == 1 || modulo == 0) throw Invalid_Argument("random_prime: Invalid modulo value"); if(equiv >= modulo || equiv % 2 == 0) throw Invalid_Argument("random_prime: equiv must be < modulo, and odd"); while(true) { BigInt p(rng, bits); p.set_bit(bits - 2); p.set_bit(0); if(p % modulo != equiv) p += (modulo - p % modulo) + equiv; const u32bit sieve_size = std::min(bits / 2, PRIME_TABLE_SIZE); SecureVector sieve(sieve_size); for(u32bit j = 0; j != sieve.size(); ++j) sieve[j] = p % PRIMES[j]; u32bit counter = 0; while(true) { if(counter == 4096 || p.bits() > bits) break; bool passes_sieve = true; ++counter; p += modulo; if(p.bits() > bits) break; for(u32bit j = 0; j != sieve.size(); ++j) { sieve[j] = (sieve[j] + modulo) % PRIMES[j]; if(sieve[j] == 0) passes_sieve = false; } if(!passes_sieve || gcd(p - 1, coprime) != 1) continue; if(passes_mr_tests(rng, p)) return p; } } } /* * Generate a random safe prime */ BigInt random_safe_prime(RandomNumberGenerator& rng, u32bit bits) { if(bits <= 64) throw Invalid_Argument("random_safe_prime: Can't make a prime of " + std::to_string(bits) + " bits"); BigInt p; do p = (random_prime(rng, bits - 1) << 1) + 1; while(!is_prime(p, rng)); return p; } }