/* * Arithmetic for point groups of elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include namespace Botan { // construct the point at infinity or a random point PointGFp::PointGFp(const CurveGFp& curve) : mC(curve), mX(curve.get_p(), 0), mY(curve.get_p(), 1), mZ(curve.get_p(), 0), mZpow2(curve.get_p(),0), mZpow3(curve.get_p(),0), mAZpow4(curve.get_p(),0), mZpow2_set(false), mZpow3_set(false), mAZpow4_set(false) { // first set the point wide pointer set_shrd_mod(mC.get_ptr_mod()); } // construct a point given its jacobian projective coordinates PointGFp::PointGFp(const CurveGFp& curve, const GFpElement& x, const GFpElement& y, const GFpElement& z) : mC(curve), mX(x), mY(y), mZ(z), mZpow2(curve.get_p(),0), mZpow3(curve.get_p(),0), mAZpow4(curve.get_p(),0), mZpow2_set(false), mZpow3_set(false), mAZpow4_set(false) { set_shrd_mod(mC.get_ptr_mod()); } PointGFp::PointGFp ( const CurveGFp& curve, const GFpElement& x, const GFpElement& y ) :mC(curve), mX(x), mY(y), mZ(curve.get_p(),1), mZpow2(curve.get_p(),0), mZpow3(curve.get_p(),0), mAZpow4(curve.get_p(),0), mZpow2_set(false), mZpow3_set(false), mAZpow4_set(false) { set_shrd_mod(mC.get_ptr_mod()); } // copy constructor PointGFp::PointGFp(const PointGFp& other) : mC(other.mC), mX(other.mX), mY(other.mY), mZ(other.mZ), mZpow2(other.mZpow2), mZpow3(other.mZpow3), mAZpow4(other.mAZpow4), mZpow2_set(other.mZpow2_set), mZpow3_set(other.mZpow3_set), mAZpow4_set(other.mAZpow4_set) { set_shrd_mod(mC.get_ptr_mod()); } // assignment operator const PointGFp& PointGFp::operator=(PointGFp const& other) { mC = other.get_curve(); mX = other.get_jac_proj_x(); mY = other.get_jac_proj_y(); mZ = other.get_jac_proj_z(); mZpow2 = GFpElement(other.mZpow2); mZpow3 = GFpElement(other.mZpow3); mAZpow4 = GFpElement(other.mAZpow4); mZpow2_set = other.mZpow2_set; mZpow3_set = other.mZpow3_set; mAZpow4_set = other.mAZpow4_set; set_shrd_mod(mC.get_ptr_mod()); return *this; } const PointGFp& PointGFp::assign_within_same_curve(PointGFp const& other) { mX = other.get_jac_proj_x(); mY = other.get_jac_proj_y(); mZ = other.get_jac_proj_z(); mZpow2_set = false; mZpow3_set = false; mAZpow4_set = false; // the rest stays! return *this; } void PointGFp::set_shrd_mod(std::tr1::shared_ptr p_mod) { mX.set_shrd_mod(p_mod); mY.set_shrd_mod(p_mod); mZ.set_shrd_mod(p_mod); mZpow2.set_shrd_mod(p_mod); mZpow3.set_shrd_mod(p_mod); mAZpow4.set_shrd_mod(p_mod); } void PointGFp::ensure_worksp() const { if (mp_worksp_gfp_el.get() != 0) { if ((*mp_worksp_gfp_el).size() == GFPEL_WKSP_SIZE) { return; } else { throw Invalid_State("encountered incorrect size for PointGFp´s GFpElement workspace"); } } mp_worksp_gfp_el = std::tr1::shared_ptr >(new std::vector); mp_worksp_gfp_el->reserve(9); for (u32bit i=0; ipush_back(GFpElement(1,0)); } } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { if (is_zero()) { *this = rhs; return *this; } if (rhs.is_zero()) { return *this; } ensure_worksp(); if (rhs.mZ == *(mC.get_mres_one())) { //U1 = mX; (*mp_worksp_gfp_el)[0].share_assign(mX); //S1 = mY; (*mp_worksp_gfp_el)[2].share_assign(mY); } else { if ((!rhs.mZpow2_set) || (!rhs.mZpow3_set)) { rhs.mZpow2 = rhs.mZ; rhs.mZpow2 *= rhs.mZ; rhs.mZpow3 = rhs.mZpow2; rhs.mZpow3 *= rhs.mZ; rhs.mZpow2_set = true; rhs.mZpow3_set = true; } //U1 = mX * rhs.mZpow2; (*mp_worksp_gfp_el)[0].share_assign(mX); (*mp_worksp_gfp_el)[0] *= rhs.mZpow2; //S1 = mY * rhs.mZpow3; (*mp_worksp_gfp_el)[2].share_assign(mY); (*mp_worksp_gfp_el)[2] *= rhs.mZpow3; } if (mZ == *(mC.get_mres_one())) { //U2 = rhs.mX; (*mp_worksp_gfp_el)[1].share_assign(rhs.mX); //S2 = rhs.mY; (*mp_worksp_gfp_el)[3].share_assign(rhs.mY); } else { if ((!mZpow2_set) || (!mZpow3_set)) { // precomputation can´t be used, because *this changes anyway mZpow2 = mZ; mZpow2 *= mZ; mZpow3 = mZpow2; mZpow3 *= mZ; } //U2 = rhs.mX * mZpow2; (*mp_worksp_gfp_el)[1].share_assign(rhs.mX); (*mp_worksp_gfp_el)[1] *= mZpow2; //S2 = rhs.mY * mZpow3; (*mp_worksp_gfp_el)[3].share_assign(rhs.mY); (*mp_worksp_gfp_el)[3] *= mZpow3; } //GFpElement H(U2 - U1); (*mp_worksp_gfp_el)[4].share_assign((*mp_worksp_gfp_el)[1]); (*mp_worksp_gfp_el)[4] -= (*mp_worksp_gfp_el)[0]; //GFpElement r(S2 - S1); (*mp_worksp_gfp_el)[5].share_assign((*mp_worksp_gfp_el)[3]); (*mp_worksp_gfp_el)[5] -= (*mp_worksp_gfp_el)[2]; //if(H.is_zero()) if ((*mp_worksp_gfp_el)[4].is_zero()) { if ((*mp_worksp_gfp_el)[5].is_zero()) { mult2_in_place(); return *this; } *this = PointGFp(mC); // setting myself to zero return *this; } //U2 = H * H; (*mp_worksp_gfp_el)[1].share_assign((*mp_worksp_gfp_el)[4]); (*mp_worksp_gfp_el)[1] *= (*mp_worksp_gfp_el)[4]; //S2 = U2 * H; (*mp_worksp_gfp_el)[3].share_assign((*mp_worksp_gfp_el)[1]); (*mp_worksp_gfp_el)[3] *= (*mp_worksp_gfp_el)[4]; //U2 *= U1; (*mp_worksp_gfp_el)[1] *= (*mp_worksp_gfp_el)[0]; //GFpElement x(r*r - S2 - (U2+U2)); (*mp_worksp_gfp_el)[6].share_assign((*mp_worksp_gfp_el)[5]); (*mp_worksp_gfp_el)[6] *= (*mp_worksp_gfp_el)[5]; (*mp_worksp_gfp_el)[6] -= (*mp_worksp_gfp_el)[3]; (*mp_worksp_gfp_el)[6] -= (*mp_worksp_gfp_el)[1]; (*mp_worksp_gfp_el)[6] -= (*mp_worksp_gfp_el)[1]; //GFpElement z(S1 * S2); (*mp_worksp_gfp_el)[8].share_assign((*mp_worksp_gfp_el)[2]); (*mp_worksp_gfp_el)[8] *= (*mp_worksp_gfp_el)[3]; //GFpElement y(r * (U2-x) - z); (*mp_worksp_gfp_el)[7].share_assign((*mp_worksp_gfp_el)[1]); (*mp_worksp_gfp_el)[7] -= (*mp_worksp_gfp_el)[6]; (*mp_worksp_gfp_el)[7] *= (*mp_worksp_gfp_el)[5]; (*mp_worksp_gfp_el)[7] -= (*mp_worksp_gfp_el)[8]; if (mZ == *(mC.get_mres_one())) { if (rhs.mZ != *(mC.get_mres_one())) { //z = rhs.mZ * H; (*mp_worksp_gfp_el)[8].share_assign(rhs.mZ); (*mp_worksp_gfp_el)[8] *= (*mp_worksp_gfp_el)[4]; } else { //z = H; (*mp_worksp_gfp_el)[8].share_assign((*mp_worksp_gfp_el)[4]); } } else if (rhs.mZ != *(mC.get_mres_one())) { //U1 = mZ * rhs.mZ; (*mp_worksp_gfp_el)[0].share_assign(mZ); (*mp_worksp_gfp_el)[0] *= rhs.mZ; //z = U1 * H; (*mp_worksp_gfp_el)[8].share_assign((*mp_worksp_gfp_el)[0]); (*mp_worksp_gfp_el)[8] *= (*mp_worksp_gfp_el)[4]; } else { //z = mZ * H; (*mp_worksp_gfp_el)[8].share_assign(mZ); (*mp_worksp_gfp_el)[8] *= (*mp_worksp_gfp_el)[4]; } mZpow2_set = false; mZpow3_set = false; mAZpow4_set = false; mX = (*mp_worksp_gfp_el)[6]; mY = (*mp_worksp_gfp_el)[7]; mZ = (*mp_worksp_gfp_el)[8]; return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if (is_zero()) { *this = minus_rhs; } else { *this += minus_rhs; } return *this; } PointGFp& PointGFp::mult_this_secure(const BigInt& scalar, const BigInt& /*point_order*/, const BigInt& /*max_secr*/) { // NOTE: FS: so far this is code duplication of op*=. // we have to see how we deal with this. // fact is that we will probably modify this function // while evaluating the countermeasures // whereas we probably will not start modifying the // function operator*=. // however, in the end both should be merged. // use montgomery mult. in this operation this->turn_on_sp_red_mul(); std::tr1::shared_ptr H(new PointGFp(this->mC)); std::tr1::shared_ptr tmp; // used for AADA PointGFp P(*this); BigInt m(scalar); if (m < BigInt(0)) { m = -m; P.negate(); } if (P.is_zero() || (m == BigInt(0))) { *this = *H; return *this; } if (m == BigInt(1)) { return *this; } // #ifdef CM_AADA #ifndef CM_RAND_EXP int max_secr_bits = max_secr.bits(); #endif #endif int mul_bits = m.bits(); // this is used for a determined number of loop runs in // the mult_loop where leading zero´s are padded if necessary. // Here we assign the value that will be used when no countermeasures are specified #ifdef CM_RAND_EXP u32bit rand_r_bit_len = 20; // Coron(99) proposes 20 bit for r #ifdef CM_AADA BigInt r_max(1); #endif // CM_AADA // use randomized exponent #ifdef TA_COLL_T static BigInt r_randexp; if (new_rand) { r_randexp = random_integer(rand_r_bit_len); } //assert(!r_randexp.is_zero()); #else BigInt r_randexp(random_integer(rand_r_bit_len)); #endif m += r_randexp * point_order; // determine mul_bits... #ifdef CM_AADA // AADA with rand. Exp. //assert(rand_r_bit_len > 0); r_max <<= rand_r_bit_len; r_max -= 1; //assert(r_max.bits() == rand_r_bit_len); mul_bits = (max_secr + point_order * r_max).bits(); #else // rand. Exp. without AADA mul_bits = m.bits(); #endif // CM_AADA #endif // CM_RAND_EXP // determine mul_bits... #if (CM_AADA == 1 && CM_RAND_EXP != 1) mul_bits = max_secr_bits; #endif // CM_AADA without CM_RAND_EXP //assert(mul_bits != 0); H = mult_loop(mul_bits-1, m, H, tmp, P); if (!H->is_zero()) // cannot convert if H == O { *this = H->get_z_to_one(); }else { *this = *H; } mX.turn_off_sp_red_mul(); mY.turn_off_sp_red_mul(); mZ.turn_off_sp_red_mul(); return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { // use montgomery mult. in this operation this->turn_on_sp_red_mul(); PointGFp H(this->mC); // create as zero H.turn_on_sp_red_mul(); PointGFp P(*this); P.turn_on_sp_red_mul(); BigInt m(scalar); if (m < BigInt(0)) { m = -m; P.negate(); } if (P.is_zero() || (m == BigInt(0))) { *this = H; return *this; } if (m == BigInt(1)) { //*this == P already return *this; } const int l = m.bits() - 1; for (int i=l; i >=0; i--) { H.mult2_in_place(); if (m.get_bit(i)) { H += P; } } if (!H.is_zero()) // cannot convert if H == O { *this = H.get_z_to_one(); }else { *this = H; } return *this; } inline std::tr1::shared_ptr PointGFp::mult_loop(int l, const BigInt& m, std::tr1::shared_ptr H, std::tr1::shared_ptr tmp, const PointGFp& P) { //assert(l >= (int)m.bits()- 1); tmp = H; std::tr1::shared_ptr to_add(new PointGFp(P)); // we just need some point // so that we can use op= // inside the loop for (int i=l; i >=0; i--) { H->mult2_in_place(); #ifndef CM_AADA if (m.get_bit(i)) { *H += P; } #else // (CM_AADA is in) if (H.get() == to_add.get()) { to_add = tmp; // otherwise all pointers might point to the same object // and we always need two objects to be able to switch around } to_add->assign_within_same_curve(*H); tmp = H; *tmp += P; // tmp already points to H if (m.get_bit(i)) { H = tmp; // NOTE: assign the pointer, not the value! // (so that the operation is fast and thus as difficult // to detect as possible) } else { H = to_add; // NOTE: this is necessary, because the assignment // "*tmp = ..." already changed what H pointed to } #endif // CM_AADA } return H; } PointGFp& PointGFp::negate() { if (!is_zero()) { mY.negate(); } return *this; } // *this *= 2 PointGFp& PointGFp::mult2_in_place() { if (is_zero()) { return *this; } if (mY.is_zero()) { *this = PointGFp(mC); // setting myself to zero return *this; } ensure_worksp(); (*mp_worksp_gfp_el)[0].share_assign(mY); (*mp_worksp_gfp_el)[0] *= mY; //GFpElement S(mX * z); (*mp_worksp_gfp_el)[1].share_assign(mX); (*mp_worksp_gfp_el)[1] *= (*mp_worksp_gfp_el)[0]; //GFpElement x(S + S); (*mp_worksp_gfp_el)[2].share_assign((*mp_worksp_gfp_el)[1]); (*mp_worksp_gfp_el)[2] += (*mp_worksp_gfp_el)[1]; //S = x + x; (*mp_worksp_gfp_el)[1].share_assign((*mp_worksp_gfp_el)[2]); (*mp_worksp_gfp_el)[1] += (*mp_worksp_gfp_el)[2]; if (!mAZpow4_set) { if (mZ == *(mC.get_mres_one())) { mAZpow4 = mC.get_mres_a(); mAZpow4_set = true; } else { if (!mZpow2_set) { mZpow2 = mZ; mZpow2 *= mZ; mZpow2_set = true; } //x = mZpow2 * mZpow2; (*mp_worksp_gfp_el)[2].share_assign(mZpow2); (*mp_worksp_gfp_el)[2] *= mZpow2; //mAZpow4 = mC.get_mres_a() * x; mAZpow4 = mC.get_mres_a(); mAZpow4 *= (*mp_worksp_gfp_el)[2]; } } //GFpElement y(mX * mX); (*mp_worksp_gfp_el)[3].share_assign(mX); (*mp_worksp_gfp_el)[3] *= mX; //GFpElement M(y + y + y + mAZpow4); (*mp_worksp_gfp_el)[4].share_assign((*mp_worksp_gfp_el)[3]); (*mp_worksp_gfp_el)[4] += (*mp_worksp_gfp_el)[3]; (*mp_worksp_gfp_el)[4] += (*mp_worksp_gfp_el)[3]; (*mp_worksp_gfp_el)[4] += mAZpow4; //x = M * M - (S+S); (*mp_worksp_gfp_el)[2].share_assign((*mp_worksp_gfp_el)[4]); (*mp_worksp_gfp_el)[2] *= (*mp_worksp_gfp_el)[4]; (*mp_worksp_gfp_el)[2] -= (*mp_worksp_gfp_el)[1]; (*mp_worksp_gfp_el)[2] -= (*mp_worksp_gfp_el)[1]; //y = z * z; (*mp_worksp_gfp_el)[3].share_assign((*mp_worksp_gfp_el)[0]); (*mp_worksp_gfp_el)[3] *= (*mp_worksp_gfp_el)[0]; //GFpElement U(y + y); (*mp_worksp_gfp_el)[5].share_assign((*mp_worksp_gfp_el)[3]); (*mp_worksp_gfp_el)[5] += (*mp_worksp_gfp_el)[3]; //z = U + U; (*mp_worksp_gfp_el)[0].share_assign((*mp_worksp_gfp_el)[5]); (*mp_worksp_gfp_el)[0] += (*mp_worksp_gfp_el)[5]; //U = z + z; (*mp_worksp_gfp_el)[5].share_assign((*mp_worksp_gfp_el)[0]); (*mp_worksp_gfp_el)[5] += (*mp_worksp_gfp_el)[0]; //y = M * (S - x) - U; (*mp_worksp_gfp_el)[3].share_assign((*mp_worksp_gfp_el)[1]); (*mp_worksp_gfp_el)[3] -= (*mp_worksp_gfp_el)[2]; (*mp_worksp_gfp_el)[3] *= (*mp_worksp_gfp_el)[4]; (*mp_worksp_gfp_el)[3] -= (*mp_worksp_gfp_el)[5]; if (mZ != *(mC.get_mres_one())) { //z = mY * mZ; (*mp_worksp_gfp_el)[0].share_assign(mY); (*mp_worksp_gfp_el)[0] *= mZ; } else { //z = mY; (*mp_worksp_gfp_el)[0].share_assign(mY); } //z = z + z; (*mp_worksp_gfp_el)[6].share_assign((*mp_worksp_gfp_el)[0]); (*mp_worksp_gfp_el)[0] += (*mp_worksp_gfp_el)[6]; //mX = x; //mY = y; //mZ = z; mX = (*mp_worksp_gfp_el)[2]; mY = (*mp_worksp_gfp_el)[3]; mZ = (*mp_worksp_gfp_el)[0]; mZpow2_set = false; mZpow3_set = false; mAZpow4_set = false; return *this; } void PointGFp::turn_on_sp_red_mul() const { mX.turn_on_sp_red_mul(); mY.turn_on_sp_red_mul(); mZ.turn_on_sp_red_mul(); // also pretransform, otherwise // we might have bad results with respect to // performance because // additions/subtractions in mult2_in_place() // and op+= spread untransformed GFpElements mX.get_mres(); mY.get_mres(); mZ.get_mres(); mZpow2.turn_on_sp_red_mul(); mZpow3.turn_on_sp_red_mul(); mAZpow4.turn_on_sp_red_mul(); } // getters /** * returns a point equivalent to *this but were * Z has value one, i.e. x and y correspond to * their values in affine coordinates */ PointGFp const PointGFp::get_z_to_one() const { return PointGFp(*this).set_z_to_one(); } /** * changes the representation of *this so that * Z has value one, i.e. x and y correspond to * their values in affine coordinates. * returns *this. */ const PointGFp& PointGFp::set_z_to_one() const { if (!(mZ.get_value() == BigInt(1)) && !(mZ.get_value() == BigInt(0))) { GFpElement z = inverse(mZ); GFpElement z2 = z * z; z *= z2; GFpElement x = mX * z2; GFpElement y = mY * z; mZ = GFpElement(mC.get_p(), BigInt(1)); mX = x; mY = y; } else { if (mZ.get_value() == BigInt(0)) { throw Illegal_Transformation("cannot convert Z to one"); } } return *this; // mZ = 1 already } const CurveGFp PointGFp::get_curve() const { return mC; } GFpElement const PointGFp::get_affine_x() const { if (is_zero()) { throw Illegal_Transformation("cannot convert to affine"); } /*if(!mZpow2_set) {*/ mZpow2 = mZ * mZ; mZpow2_set = true; //} //assert(mZpow2 == mZ*mZ); GFpElement z2 = mZpow2; return mX * z2.inverse_in_place(); } GFpElement const PointGFp::get_affine_y() const { if (is_zero()) { throw Illegal_Transformation("cannot convert to affine"); } /*if(!mZpow3_set ) {*/ mZpow3 = mZ * mZ * mZ; mZpow3_set = true; //} //assert(mZpow3 == mZ * mZ *mZ); GFpElement z3 = mZpow3; return mY * z3.inverse_in_place(); } GFpElement const PointGFp::get_jac_proj_x() const { return GFpElement(mX); } GFpElement const PointGFp::get_jac_proj_y() const { return GFpElement(mY); } GFpElement const PointGFp::get_jac_proj_z() const { return GFpElement(mZ); } // Is this the point at infinity? bool PointGFp::is_zero() const { return(mX.is_zero() && mZ.is_zero()); //NOTE: the calls to GFpElement::is_zero() instead of getting the value and // and comparing it are import because they do not provoke backtransformations // to the ordinary residue. } // Is the point still on the curve?? // (If everything is correct, the point is always on its curve; then the // function will return silently. If Oskar managed to corrupt this object's state, // then it will throw an exception.) void PointGFp::check_invariants() const { if (is_zero()) { return; } const GFpElement y2 = mY * mY; const GFpElement x3 = mX * mX * mX; if (mZ.get_value() == BigInt(1)) { GFpElement ax = mC.get_a() * mX; if(y2 != (x3 + ax + mC.get_b())) { throw Illegal_Point(); } } mZpow2 = mZ * mZ; mZpow2_set = true; mZpow3 = mZpow2 * mZ; mZpow3_set = true; mAZpow4 = mZpow3 * mZ * mC.get_a(); mAZpow4_set = true; const GFpElement aXZ4 = mAZpow4 * mX; const GFpElement bZ6 = mC.get_b() * mZpow3 * mZpow3; if (y2 != (x3 + aXZ4 + bZ6)) throw Illegal_Point(); } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { mC.swap(other.mC); mX.swap(other.mX); mY.swap(other.mY); mZ.swap(other.mZ); mZpow2.swap(other.mZpow2); mZpow3.swap(other.mZpow3); mAZpow4.swap(other.mAZpow4); std::swap(mZpow2_set, other.mZpow2_set); std::swap(mZpow3_set, other.mZpow3_set); std::swap(mAZpow4_set, other.mAZpow4_set); } PointGFp mult2(const PointGFp& point) { return (PointGFp(point)).mult2_in_place(); } bool operator==(const PointGFp& lhs, PointGFp const& rhs) { if (lhs.is_zero() && rhs.is_zero()) { return true; } if ((lhs.is_zero() && !rhs.is_zero()) || (!lhs.is_zero() && rhs.is_zero())) { return false; } // neither operand is zero, so we can call get_z_to_one() //assert(!lhs.is_zero()); //assert(!rhs.is_zero()); PointGFp aff_lhs = lhs.get_z_to_one(); PointGFp aff_rhs = rhs.get_z_to_one(); return (aff_lhs.get_curve() == aff_rhs.get_curve() && aff_lhs.get_jac_proj_x() == aff_rhs.get_jac_proj_x() && aff_lhs.get_jac_proj_y() == aff_rhs.get_jac_proj_y()); } // arithmetic operators PointGFp operator+(const PointGFp& lhs, PointGFp const& rhs) { PointGFp tmp(lhs); return tmp += rhs; } PointGFp operator-(const PointGFp& lhs, PointGFp const& rhs) { PointGFp tmp(lhs); return tmp -= rhs; } PointGFp operator-(const PointGFp& lhs) { return PointGFp(lhs).negate(); } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { PointGFp result(point); return result *= scalar; } PointGFp operator*(const PointGFp& point, const BigInt& scalar) { PointGFp result(point); return result *= scalar; } PointGFp mult_point_secure(const PointGFp& point, const BigInt& scalar, const BigInt& point_order, const BigInt& max_secret) { PointGFp result(point); result.mult_this_secure(scalar, point_order, max_secret); return result; } // encoding and decoding SecureVector EC2OSP(const PointGFp& point, byte format) { SecureVector result; if (format == PointGFp::UNCOMPRESSED) { result = encode_uncompressed(point); } else if (format == PointGFp::COMPRESSED) { result = encode_compressed(point); } else if (format == PointGFp::HYBRID) { result = encode_hybrid(point); } else { throw Format_Error("illegal point encoding format specification"); } return result; } SecureVector encode_compressed(const PointGFp& point) { if (point.is_zero()) { SecureVector result (1); result[0] = 0; return result; } u32bit l = point.get_curve().get_p().bits(); int dummy = l & 7; if (dummy != 0) { l += 8 - dummy; } l /= 8; SecureVector result (l+1); result[0] = 2; BigInt x = point.get_affine_x().get_value(); SecureVector bX = BigInt::encode_1363(x, l); result.copy(1, bX.begin(), bX.size()); BigInt y = point.get_affine_y().get_value(); if (y.get_bit(0)) { result[0] |= 1; } return result; } SecureVector encode_uncompressed(const PointGFp& point) { if (point.is_zero()) { SecureVector result (1); result[0] = 0; return result; } u32bit l = point.get_curve().get_p().bits(); int dummy = l & 7; if (dummy != 0) { l += 8 - dummy; } l /= 8; SecureVector result (2*l+1); result[0] = 4; BigInt x = point.get_affine_x().get_value(); BigInt y = point.get_affine_y().get_value(); SecureVector bX = BigInt::encode_1363(x, l); SecureVector bY = BigInt::encode_1363(y, l); result.copy(1, bX.begin(), l); result.copy(l+1, bY.begin(), l); return result; } SecureVector encode_hybrid(const PointGFp& point) { if (point.is_zero()) { SecureVector result (1); result[0] = 0; return result; } u32bit l = point.get_curve().get_p().bits(); int dummy = l & 7; if (dummy != 0) { l += 8 - dummy; } l /= 8; SecureVector result (2*l+1); result[0] = 6; BigInt x = point.get_affine_x().get_value(); BigInt y = point.get_affine_y().get_value(); SecureVector bX = BigInt::encode_1363(x, l); SecureVector bY = BigInt::encode_1363(y, l); result.copy(1, bX.begin(), bX.size()); result.copy(l+1, bY.begin(), bY.size()); if (y.get_bit(0)) { result[0] |= 1; } return result; } PointGFp OS2ECP(MemoryRegion const& os, const CurveGFp& curve) { if (os.size() == 1 && os[0] == 0) { return PointGFp(curve); // return zero } SecureVector bX; SecureVector bY; GFpElement x(1,0); GFpElement y(1,0); GFpElement z(1,0); const byte pc = os[0]; BigInt bi_dec_x; BigInt bi_dec_y; switch (pc) { case 2: case 3: //compressed form bX = SecureVector(os.size() - 1); bX.copy(os.begin()+1, os.size()-1); /* Problem wäre, wenn decode() das erste bit als Vorzeichen interpretiert. *--------------------- * AW(FS): decode() interpretiert das erste Bit nicht als Vorzeichen */ bi_dec_x = BigInt::decode(bX, bX.size()); x = GFpElement(curve.get_p(), bi_dec_x); bool yMod2; yMod2 = (pc & 1) == 1; y = PointGFp::decompress(yMod2, x, curve); break; case 4: // uncompressed form int l; l = (os.size() -1)/2; bX = SecureVector(l); bY = SecureVector(l); bX.copy(os.begin()+1, l); bY.copy(os.begin()+1+l, l); bi_dec_x = BigInt::decode(bX.begin(), bX.size()); bi_dec_y = BigInt::decode(bY.begin(),bY.size()); x = GFpElement(curve.get_p(), bi_dec_x); y = GFpElement(curve.get_p(), bi_dec_y); break; case 6: case 7: //hybrid form l = (os.size() - 1)/2; bX = SecureVector(l); bY = SecureVector(l); bX.copy(os.begin() + 1, l); bY.copy(os.begin()+1+l, l); yMod2 = (pc & 0x01) == 1; if (!(PointGFp::decompress(yMod2, x, curve) == y)) { throw Illegal_Point("error during decoding hybrid format"); } break; default: throw Format_Error("encountered illegal format specification while decoding point"); } z = GFpElement(curve.get_p(), BigInt(1)); //assert((x.is_trf_to_mres() && x.is_use_montgm()) || !x.is_trf_to_mres()); //assert((y.is_trf_to_mres() && y.is_use_montgm()) || !y.is_trf_to_mres()); //assert((z.is_trf_to_mres() && z.is_use_montgm()) || !z.is_trf_to_mres()); PointGFp result(curve, x, y, z); result.check_invariants(); //assert((result.get_jac_proj_x().is_trf_to_mres() && result.get_jac_proj_x().is_use_montgm()) || !result.get_jac_proj_x().is_trf_to_mres()); //assert((result.get_jac_proj_y().is_trf_to_mres() && result.get_jac_proj_y().is_use_montgm()) || !result.get_jac_proj_y().is_trf_to_mres()); //assert((result.get_jac_proj_z().is_trf_to_mres() && result.get_jac_proj_z().is_use_montgm()) || !result.get_jac_proj_z().is_trf_to_mres()); return result; } GFpElement PointGFp::decompress(bool yMod2, const GFpElement& x, const CurveGFp& curve) { BigInt xVal = x.get_value(); BigInt xpow3 = xVal * xVal * xVal; BigInt g = curve.get_a().get_value() * xVal; g += xpow3; g += curve.get_b().get_value(); g = g%curve.get_p(); BigInt z = ressol(g, curve.get_p()); if(z < 0) throw Illegal_Point("error during decompression"); bool zMod2 = z.get_bit(0); if ((zMod2 && ! yMod2) || (!zMod2 && yMod2)) { z = curve.get_p() - z; } return GFpElement(curve.get_p(),z); } PointGFp create_random_point(RandomNumberGenerator& rng, const CurveGFp& curve) { // create a random point GFpElement mX(1,1); GFpElement mY(1,1); GFpElement mZ(1,1); GFpElement minusOne(curve.get_p(), BigInt(BigInt::Negative,1)); mY = minusOne; GFpElement y2(1,1); GFpElement x(1,1); while (mY == minusOne) { BigInt value(rng, curve.get_p().bits()); mX = GFpElement(curve.get_p(),value); y2 = curve.get_a() * mX; x = mX * mX; x *= mX; y2 += (x + curve.get_b()); value = ressol(y2.get_value(), curve.get_p()); if(value < 0) mY = minusOne; else mY = GFpElement(curve.get_p(), value); } mZ = GFpElement(curve.get_p(), BigInt(1)); return PointGFp(curve, mX, mY, mZ); } } // namespace Botan