/* * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2011 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : curve(curve), ws(2 * (curve.get_p_words() + 2)) { coord_x = 0; coord_y = monty_mult(1, curve.get_r2()); coord_z = 0; } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : curve(curve), ws(2 * (curve.get_p_words() + 2)) { coord_x = monty_mult(x, curve.get_r2()); coord_y = monty_mult(y, curve.get_r2()); coord_z = monty_mult(1, curve.get_r2()); } // Montgomery multiplication void PointGFp::monty_mult(BigInt& z, const BigInt& x, const BigInt& y) const { //assert(&z != &x && &z != &y); if(x.is_zero() || y.is_zero()) { z = 0; return; } const BigInt& p = curve.get_p(); const size_t p_size = curve.get_p_words(); const word p_dash = curve.get_p_dash(); SecureVector& z_reg = z.get_reg(); z_reg.resize(2*p_size+1); zeroise(z_reg); bigint_monty_mul(&z_reg[0], z_reg.size(), x.data(), x.size(), x.sig_words(), y.data(), y.size(), y.sig_words(), p.data(), p_size, p_dash, &ws[0]); } // Montgomery squaring void PointGFp::monty_sqr(BigInt& z, const BigInt& x) const { //assert(&z != &x); if(x.is_zero()) { z = 0; return; } const BigInt& p = curve.get_p(); const size_t p_size = curve.get_p_words(); const word p_dash = curve.get_p_dash(); SecureVector& z_reg = z.get_reg(); z_reg.resize(2*p_size+1); zeroise(z_reg); bigint_monty_sqr(&z_reg[0], z_reg.size(), x.data(), x.size(), x.sig_words(), p.data(), p_size, p_dash, &ws[0]); } // Point addition void PointGFp::add(const PointGFp& rhs, std::vector& ws_bn) { if(is_zero()) { coord_x = rhs.coord_x; coord_y = rhs.coord_y; coord_z = rhs.coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = curve.get_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; monty_sqr(rhs_z2, rhs.coord_z); monty_mult(U1, coord_x, rhs_z2); monty_mult(S1, coord_y, monty_mult(rhs.coord_z, rhs_z2)); monty_sqr(lhs_z2, coord_z); monty_mult(U2, rhs.coord_x, lhs_z2); monty_mult(S2, rhs.coord_y, monty_mult(coord_z, lhs_z2)); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } *this = PointGFp(curve); // setting myself to zero return; } monty_sqr(U2, H); monty_mult(S2, U2, H); U2 = monty_mult(U1, U2); monty_sqr(coord_x, r); coord_x -= S2; coord_x -= (U2 << 1); while(coord_x.is_negative()) coord_x += p; U2 -= coord_x; if(U2.is_negative()) U2 += p; monty_mult(coord_y, r, U2); coord_y -= monty_mult(S1, S2); if(coord_y.is_negative()) coord_y += p; monty_mult(coord_z, monty_mult(coord_z, rhs.coord_z), H); } // *this *= 2 void PointGFp::mult2(std::vector& ws_bn) { if(is_zero()) return; else if(coord_y.is_zero()) { *this = PointGFp(curve); // setting myself to zero return; } const BigInt& p = curve.get_p(); BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; BigInt& z4 = ws_bn[2]; BigInt& a_z4 = ws_bn[3]; BigInt& M = ws_bn[4]; BigInt& U = ws_bn[5]; BigInt& x = ws_bn[6]; BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; monty_sqr(y_2, coord_y); monty_mult(S, coord_x, y_2); S <<= 2; // * 4 while(S >= p) S -= p; monty_sqr(z4, monty_sqr(coord_z)); monty_mult(a_z4, curve.get_a_r(), z4); M = 3 * monty_sqr(coord_x); M += a_z4; while(M >= p) M -= p; monty_sqr(x, M); x -= (S << 1); while(x.is_negative()) x += p; monty_sqr(U, y_2); U <<= 3; while(U >= p) U -= p; S -= x; while(S.is_negative()) S += p; monty_mult(y, M, S); y -= U; if(y.is_negative()) y += p; monty_mult(z, coord_y, coord_z); z <<= 1; if(z >= p) z -= p; coord_x = x; coord_y = y; coord_z = z; } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { std::vector ws(9); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { *this = scalar * *this; return *this; } PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, const PointGFp& p2, const BigInt& z2) { const PointGFp p3 = p1 + p2; PointGFp H(p1.curve); // create as zero size_t bits_left = std::max(z1.bits(), z2.bits()); std::vector ws(9); while(bits_left) { H.mult2(ws); const bool z1_b = z1.get_bit(bits_left - 1); const bool z2_b = z2.get_bit(bits_left - 1); if(z1_b == true && z2_b == true) H.add(p3, ws); else if(z1_b) H.add(p1, ws); else if(z2_b) H.add(p2, ws); --bits_left; } if(z1.is_negative() != z2.is_negative()) H.negate(); return H; } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { const CurveGFp& curve = point.get_curve(); if(scalar.is_zero()) return PointGFp(curve); // zero point std::vector ws(9); if(scalar.abs() <= 2) // special cases for small values { byte value = scalar.abs().byte_at(0); PointGFp result = point; if(value == 2) result.mult2(ws); if(scalar.is_negative()) result.negate(); return result; } const size_t scalar_bits = scalar.bits(); #if 0 PointGFp x1 = PointGFp(curve); PointGFp x2 = point; size_t bits_left = scalar_bits; // Montgomery Ladder while(bits_left) { const bool bit_set = scalar.get_bit(bits_left - 1); if(bit_set) { x1.add(x2, ws); x2.mult2(ws); } else { x2.add(x1, ws); x1.mult2(ws); } --bits_left; } if(scalar.is_negative()) x1.negate(); return x1; #else const size_t window_size = 4; std::vector Ps(1 << window_size); Ps[0] = PointGFp(curve); Ps[1] = point; for(size_t i = 2; i != Ps.size(); ++i) { Ps[i] = Ps[i-1]; Ps[i].add(point, ws); } PointGFp H(curve); // create as zero size_t bits_left = scalar_bits; while(bits_left >= window_size) { for(size_t i = 0; i != window_size; ++i) H.mult2(ws); const u32bit nibble = scalar.get_substring(bits_left - window_size, window_size); H.add(Ps[nibble], ws); bits_left -= window_size; } while(bits_left) { H.mult2(ws); if(scalar.get_bit(bits_left-1)) H.add(point, ws); --bits_left; } if(scalar.is_negative()) H.negate(); return H; #endif } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const BigInt& r2 = curve.get_r2(); BigInt z2 = monty_sqr(coord_z); z2 = inverse_mod(z2, curve.get_p()); z2 = monty_mult(z2, r2); return monty_mult(coord_x, z2); } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); const BigInt& r2 = curve.get_r2(); BigInt z3 = monty_mult(coord_z, monty_sqr(coord_z)); z3 = inverse_mod(z3, curve.get_p()); z3 = monty_mult(z3, r2); return monty_mult(coord_y, z3); } bool PointGFp::on_the_curve() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return true. If somehow the state is corrupted, which suggests a fault attack (or internal computational error), then return false. */ if(is_zero()) return true; BigInt y2 = monty_mult(monty_sqr(coord_y), 1); BigInt x3 = monty_mult(coord_x, monty_sqr(coord_x)); BigInt ax = monty_mult(coord_x, curve.get_a_r()); const BigInt& b_r = curve.get_b_r(); BigInt z2 = monty_sqr(coord_z); if(coord_z == z2) // Is z equal to 1 (in Montgomery form)? { if(y2 != monty_mult(x3 + ax + b_r, 1)) return false; } BigInt z3 = monty_mult(coord_z, z2); BigInt ax_z4 = monty_mult(ax, monty_sqr(z2)); BigInt b_z6 = monty_mult(b_r, monty_sqr(z3)); if(y2 != monty_mult(x3 + ax_z4 + b_z6, 1)) return false; return true; } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { curve.swap(other.curve); coord_x.swap(other.coord_x); coord_y.swap(other.coord_y); coord_z.swap(other.coord_z); ws.swap(other.ws); } bool PointGFp::operator==(const PointGFp& other) const { if(get_curve() != other.get_curve()) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding SecureVector EC2OSP(const PointGFp& point, byte format) { if(point.is_zero()) return SecureVector(1); // single 0 byte const size_t p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); SecureVector bX = BigInt::encode_1363(x, p_bytes); SecureVector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { SecureVector result; result.push_back(0x04); result += bX; result += bY; return result; } else if(format == PointGFp::COMPRESSED) { SecureVector result; result.push_back(0x02 | static_cast(y.get_bit(0))); result += bX; return result; } else if(format == PointGFp::HYBRID) { SecureVector result; result.push_back(0x06 | static_cast(y.get_bit(0))); result += bX; result += bY; return result; } else throw Invalid_Argument("illegal point encoding format specification"); } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const CurveGFp& curve) { BigInt xpow3 = x * x * x; BigInt g = curve.get_a() * x; g += xpow3; g += curve.get_b(); g = g % curve.get_p(); BigInt z = ressol(g, curve.get_p()); if(z < 0) throw Illegal_Point("error during decompression"); if(z.get_bit(0) != yMod2) z = curve.get_p() - z; return z; } } PointGFp OS2ECP(const byte data[], size_t data_len, const CurveGFp& curve) { if(data_len <= 1) return PointGFp(curve); // return zero const byte pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); const bool y_mod_2 = ((pc & 0x01) == 1); y = decompress_point(y_mod_2, x, curve); } else if(pc == 4) { const size_t l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const size_t l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); const bool y_mod_2 = ((pc & 0x01) == 1); if(decompress_point(y_mod_2, x, curve) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type"); PointGFp result(curve, x, y); if(!result.on_the_curve()) throw Illegal_Point("OS2ECP: Decoded point was not on the curve"); return result; } }