/************************************************* * Prime Generation Source File * * (C) 1999-2006 The Botan Project * *************************************************/ #include #include #include #include #include #include #include #include namespace Botan { namespace { /************************************************* * Increment the seed by one * *************************************************/ void increment(SecureVector& seed) { for(u32bit j = seed.size(); j > 0; --j) if(++seed[j-1]) break; } } /************************************************* * Attempt DSA prime generation with given seed * *************************************************/ bool generate_dsa_primes(BigInt& p, BigInt& q, const byte const_seed[], u32bit seed_len, u32bit pbits, u32bit counter_start) { if(seed_len < 20) throw Invalid_Argument("DSA prime generation needs a seed " "at least 160 bits long"); if((pbits % 64 != 0) || (pbits > 1024) || (pbits < 512)) throw Invalid_Argument("DSA prime generation algorithm does not support " "prime size " + to_string(pbits)); std::auto_ptr sha1(get_hash("SHA-1")); SecureVector seed(const_seed, seed_len); SecureVector qhash = sha1->process(seed); increment(seed); SecureVector qhash2 = sha1->process(seed); xor_buf(qhash, qhash2, qhash.size()); qhash[0] |= 0x80; qhash[19] |= 0x01; q.binary_decode(qhash, qhash.size()); if(!is_prime(q)) return false; UI::pulse(UI::PRIME_FOUND); u32bit n = (pbits-1) / 160, b = (pbits-1) % 160; SecureVector W(20 * (n+1)); BigInt X; for(u32bit j = 0; j != counter_start; ++j) for(u32bit k = 0; k != n + 1; ++k) increment(seed); for(u32bit j = 0; j != 4096 - counter_start; ++j) { UI::pulse(UI::PRIME_SEARCHING); for(u32bit k = 0; k != n + 1; ++k) { increment(seed); sha1->update(seed); sha1->final(W + 20 * (n-k)); } X.binary_decode(W + (20 - 1 - b/8), W.size() - (20 - 1 - b/8)); X.set_bit(pbits-1); p = X - (X % (2*q) - 1); if(p.bits() == pbits && is_prime(p)) { UI::pulse(UI::PRIME_FOUND); return true; } } return false; } /************************************************* * Generate DSA Primes * *************************************************/ SecureVector generate_dsa_primes(BigInt& p, BigInt& q, u32bit pbits) { SecureVector seed(20); while(true) { Global_RNG::randomize(seed, seed.size()); UI::pulse(UI::PRIME_SEARCHING); if(generate_dsa_primes(p, q, seed, seed.size(), pbits)) return seed; } } /************************************************* * Generate a random prime * *************************************************/ BigInt random_prime(u32bit bits, const BigInt& coprime, u32bit equiv, u32bit modulo) { if(bits < 48) throw Invalid_Argument("random_prime: Can't make a prime of " + to_string(bits) + " bits"); if(coprime <= 0) throw Invalid_Argument("random_prime: coprime must be > 0"); if(modulo % 2 == 1 || modulo == 0) throw Invalid_Argument("random_prime: Invalid modulo value"); if(equiv >= modulo || equiv % 2 == 0) throw Invalid_Argument("random_prime: equiv must be < modulo, and odd"); while(true) { UI::pulse(UI::PRIME_SEARCHING); BigInt p = random_integer(bits); p.set_bit(bits - 2); p.set_bit(0); if(p % modulo != equiv) p += (modulo - p % modulo) + equiv; const u32bit sieve_size = std::min(bits / 2, PRIME_TABLE_SIZE); SecureVector sieve(sieve_size); for(u32bit j = 0; j != sieve.size(); ++j) { sieve[j] = p % PRIMES[j]; UI::pulse(UI::PRIME_SIEVING); } u32bit counter = 0; while(true) { if(counter == 4096 || p.bits() > bits) break; UI::pulse(UI::PRIME_SEARCHING); bool passes_sieve = true; ++counter; p += modulo; for(u32bit j = 0; j != sieve.size(); ++j) { sieve[j] = (sieve[j] + modulo) % PRIMES[j]; UI::pulse(UI::PRIME_SIEVING); if(sieve[j] == 0) passes_sieve = false; } if(!passes_sieve || gcd(p - 1, coprime) != 1) continue; UI::pulse(UI::PRIME_PASSED_SIEVE); if(passes_mr_tests(p)) { UI::pulse(UI::PRIME_FOUND); return p; } } } } }