/* * Lightweight wrappers for SIMD operations * (C) 2009,2011,2016 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #ifndef BOTAN_SIMD_32_H__ #define BOTAN_SIMD_32_H__ #include #include #include #if defined(BOTAN_TARGET_SUPPORTS_SSE2) #include #define BOTAN_SIMD_USE_SSE2 #elif defined(BOTAN_TARGET_SUPPORTS_ALTIVEC) #include #undef vector #undef bool #define BOTAN_SIMD_USE_ALTIVEC #endif // TODO: NEON support namespace Botan { /** * This class is not a general purpose SIMD type, and only offers * instructions needed for evaluation of specific crypto primitives. * For example it does not currently have equality operators of any * kind. */ class SIMD_4x32 { public: SIMD_4x32() // zero initialized { #if defined(BOTAN_SIMD_USE_SSE2) || defined(BOTAN_SIMD_USE_ALTIVEC) ::memset(&m_reg, 0, sizeof(m_reg)); #else ::memset(m_reg, 0, sizeof(m_reg)); #endif } explicit SIMD_4x32(const uint32_t B[4]) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_loadu_si128(reinterpret_cast(B)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = (__vector unsigned int){B[0], B[1], B[2], B[3]}; #else m_reg[0] = B[0]; m_reg[1] = B[1]; m_reg[2] = B[2]; m_reg[3] = B[3]; #endif } SIMD_4x32(uint32_t B0, uint32_t B1, uint32_t B2, uint32_t B3) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_set_epi32(B0, B1, B2, B3); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = (__vector unsigned int){B0, B1, B2, B3}; #else m_reg[0] = B0; m_reg[1] = B1; m_reg[2] = B2; m_reg[3] = B3; #endif } static SIMD_4x32 splat(uint32_t B) { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_set1_epi32(B)); #else return SIMD_4x32(B, B, B, B); #endif } static SIMD_4x32 load_le(const void* in) { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_loadu_si128(reinterpret_cast(in))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) const uint32_t* in_32 = static_cast(in); __vector unsigned int R0 = vec_ld(0, in_32); __vector unsigned int R1 = vec_ld(12, in_32); __vector unsigned char perm = vec_lvsl(0, in_32); #if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN) perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector #endif R0 = vec_perm(R0, R1, perm); return SIMD_4x32(R0); #else SIMD_4x32 out; Botan::load_le(out.m_reg, static_cast(in), 4); return out; #endif } static SIMD_4x32 load_be(const void* in) { #if defined(BOTAN_SIMD_USE_SSE2) return load_le(in).bswap(); #elif defined(BOTAN_SIMD_USE_ALTIVEC) const uint32_t* in_32 = static_cast(in); __vector unsigned int R0 = vec_ld(0, in_32); __vector unsigned int R1 = vec_ld(12, in_32); __vector unsigned char perm = vec_lvsl(0, in_32); #if defined(BOTAN_TARGET_CPU_IS_LITTLE_ENDIAN) perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector #endif R0 = vec_perm(R0, R1, perm); return SIMD_4x32(R0); #else SIMD_4x32 out; Botan::load_be(out.m_reg, static_cast(in), 4); return out; #endif } void store_le(uint8_t out[]) const { #if defined(BOTAN_SIMD_USE_SSE2) _mm_storeu_si128(reinterpret_cast<__m128i*>(out), m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) __vector unsigned char perm = vec_lvsl(0, static_cast(nullptr)); #if defined(BOTAN_TARGET_CPU_IS_BIG_ENDIAN) perm = vec_xor(perm, vec_splat_u8(3)); // bswap vector #endif union { __vector unsigned int V; uint32_t R[4]; } vec; vec.V = vec_perm(m_reg, m_reg, perm); Botan::store_be(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]); #else Botan::store_le(out, m_reg[0], m_reg[1], m_reg[2], m_reg[3]); #endif } void store_be(uint8_t out[]) const { #if defined(BOTAN_SIMD_USE_SSE2) bswap().store_le(out); #elif defined(BOTAN_SIMD_USE_ALTIVEC) union { __vector unsigned int V; uint32_t R[4]; } vec; vec.V = m_reg; Botan::store_be(out, vec.R[0], vec.R[1], vec.R[2], vec.R[3]); #else Botan::store_be(out, m_reg[0], m_reg[1], m_reg[2], m_reg[3]); #endif } void rotate_left(size_t rot) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_or_si128(_mm_slli_epi32(m_reg, static_cast(rot)), _mm_srli_epi32(m_reg, static_cast(32-rot))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) const unsigned int r = static_cast(rot); m_reg = vec_rl(m_reg, (__vector unsigned int){r, r, r, r}); #else m_reg[0] = Botan::rotate_left(m_reg[0], rot); m_reg[1] = Botan::rotate_left(m_reg[1], rot); m_reg[2] = Botan::rotate_left(m_reg[2], rot); m_reg[3] = Botan::rotate_left(m_reg[3], rot); #endif } void rotate_right(size_t rot) { rotate_left(32 - rot); } void operator+=(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_add_epi32(m_reg, other.m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = vec_add(m_reg, other.m_reg); #else m_reg[0] += other.m_reg[0]; m_reg[1] += other.m_reg[1]; m_reg[2] += other.m_reg[2]; m_reg[3] += other.m_reg[3]; #endif } SIMD_4x32 operator+(const SIMD_4x32& other) const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_add_epi32(m_reg, other.m_reg)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) return SIMD_4x32(vec_add(m_reg, other.m_reg)); #else return SIMD_4x32(m_reg[0] + other.m_reg[0], m_reg[1] + other.m_reg[1], m_reg[2] + other.m_reg[2], m_reg[3] + other.m_reg[3]); #endif } void operator-=(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_sub_epi32(m_reg, other.m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = vec_sub(m_reg, other.m_reg); #else m_reg[0] -= other.m_reg[0]; m_reg[1] -= other.m_reg[1]; m_reg[2] -= other.m_reg[2]; m_reg[3] -= other.m_reg[3]; #endif } SIMD_4x32 operator-(const SIMD_4x32& other) const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_sub_epi32(m_reg, other.m_reg)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) return SIMD_4x32(vec_sub(m_reg, other.m_reg)); #else return SIMD_4x32(m_reg[0] - other.m_reg[0], m_reg[1] - other.m_reg[1], m_reg[2] - other.m_reg[2], m_reg[3] - other.m_reg[3]); #endif } void operator^=(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_xor_si128(m_reg, other.m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = vec_xor(m_reg, other.m_reg); #else m_reg[0] ^= other.m_reg[0]; m_reg[1] ^= other.m_reg[1]; m_reg[2] ^= other.m_reg[2]; m_reg[3] ^= other.m_reg[3]; #endif } SIMD_4x32 operator^(const SIMD_4x32& other) const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_xor_si128(m_reg, other.m_reg)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) return SIMD_4x32(vec_xor(m_reg, other.m_reg)); #else return SIMD_4x32(m_reg[0] ^ other.m_reg[0], m_reg[1] ^ other.m_reg[1], m_reg[2] ^ other.m_reg[2], m_reg[3] ^ other.m_reg[3]); #endif } void operator|=(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_or_si128(m_reg, other.m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = vec_or(m_reg, other.m_reg); #else m_reg[0] |= other.m_reg[0]; m_reg[1] |= other.m_reg[1]; m_reg[2] |= other.m_reg[2]; m_reg[3] |= other.m_reg[3]; #endif } SIMD_4x32 operator&(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_and_si128(m_reg, other.m_reg)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) return SIMD_4x32(vec_and(m_reg, other.m_reg)); #else return SIMD_4x32(m_reg[0] & other.m_reg[0], m_reg[1] & other.m_reg[1], m_reg[2] & other.m_reg[2], m_reg[3] & other.m_reg[3]); #endif } void operator&=(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) m_reg = _mm_and_si128(m_reg, other.m_reg); #elif defined(BOTAN_SIMD_USE_ALTIVEC) m_reg = vec_and(m_reg, other.m_reg); #else m_reg[0] &= other.m_reg[0]; m_reg[1] &= other.m_reg[1]; m_reg[2] &= other.m_reg[2]; m_reg[3] &= other.m_reg[3]; #endif } SIMD_4x32 operator<<(size_t shift) const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_slli_epi32(m_reg, static_cast(shift))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) const unsigned int s = static_cast(shift); return SIMD_4x32(vec_sl(m_reg, (__vector unsigned int){s, s, s, s})); #else return SIMD_4x32(m_reg[0] << shift, m_reg[1] << shift, m_reg[2] << shift, m_reg[3] << shift); #endif } SIMD_4x32 operator>>(size_t shift) const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_srli_epi32(m_reg, static_cast(shift))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) const unsigned int s = static_cast(shift); return SIMD_4x32(vec_sr(m_reg, (__vector unsigned int){s, s, s, s})); #else return SIMD_4x32(m_reg[0] >> shift, m_reg[1] >> shift, m_reg[2] >> shift, m_reg[3] >> shift); #endif } SIMD_4x32 operator~() const { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_xor_si128(m_reg, _mm_set1_epi32(0xFFFFFFFF))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) return SIMD_4x32(vec_nor(m_reg, m_reg)); #else return SIMD_4x32(~m_reg[0], ~m_reg[1], ~m_reg[2], ~m_reg[3]); #endif } // (~reg) & other SIMD_4x32 andc(const SIMD_4x32& other) { #if defined(BOTAN_SIMD_USE_SSE2) return SIMD_4x32(_mm_andnot_si128(m_reg, other.m_reg)); #elif defined(BOTAN_SIMD_USE_ALTIVEC) /* AltiVec does arg1 & ~arg2 rather than SSE's ~arg1 & arg2 so swap the arguments */ return SIMD_4x32(vec_andc(other.m_reg, m_reg)); #else return SIMD_4x32((~m_reg[0]) & other.m_reg[0], (~m_reg[1]) & other.m_reg[1], (~m_reg[2]) & other.m_reg[2], (~m_reg[3]) & other.m_reg[3]); #endif } SIMD_4x32 bswap() const { #if defined(BOTAN_SIMD_USE_SSE2) __m128i T = m_reg; T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1)); T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1)); return SIMD_4x32(_mm_or_si128(_mm_srli_epi16(T, 8), _mm_slli_epi16(T, 8))); #elif defined(BOTAN_SIMD_USE_ALTIVEC) __vector unsigned char perm = vec_lvsl(0, static_cast(nullptr)); perm = vec_xor(perm, vec_splat_u8(3)); return SIMD_4x32(vec_perm(m_reg, m_reg, perm)); #else return SIMD_4x32(reverse_bytes(m_reg[0]), reverse_bytes(m_reg[1]), reverse_bytes(m_reg[2]), reverse_bytes(m_reg[3])); #endif } static void transpose(SIMD_4x32& B0, SIMD_4x32& B1, SIMD_4x32& B2, SIMD_4x32& B3) { #if defined(BOTAN_SIMD_USE_SSE2) __m128i T0 = _mm_unpacklo_epi32(B0.m_reg, B1.m_reg); __m128i T1 = _mm_unpacklo_epi32(B2.m_reg, B3.m_reg); __m128i T2 = _mm_unpackhi_epi32(B0.m_reg, B1.m_reg); __m128i T3 = _mm_unpackhi_epi32(B2.m_reg, B3.m_reg); B0.m_reg = _mm_unpacklo_epi64(T0, T1); B1.m_reg = _mm_unpackhi_epi64(T0, T1); B2.m_reg = _mm_unpacklo_epi64(T2, T3); B3.m_reg = _mm_unpackhi_epi64(T2, T3); #elif defined(BOTAN_SIMD_USE_ALTIVEC) __vector unsigned int T0 = vec_mergeh(B0.m_reg, B2.m_reg); __vector unsigned int T1 = vec_mergel(B0.m_reg, B2.m_reg); __vector unsigned int T2 = vec_mergeh(B1.m_reg, B3.m_reg); __vector unsigned int T3 = vec_mergel(B1.m_reg, B3.m_reg); B0.m_reg = vec_mergeh(T0, T2); B1.m_reg = vec_mergel(T0, T2); B2.m_reg = vec_mergeh(T1, T3); B3.m_reg = vec_mergel(T1, T3); #else SIMD_4x32 T0(B0.m_reg[0], B1.m_reg[0], B2.m_reg[0], B3.m_reg[0]); SIMD_4x32 T1(B0.m_reg[1], B1.m_reg[1], B2.m_reg[1], B3.m_reg[1]); SIMD_4x32 T2(B0.m_reg[2], B1.m_reg[2], B2.m_reg[2], B3.m_reg[2]); SIMD_4x32 T3(B0.m_reg[3], B1.m_reg[3], B2.m_reg[3], B3.m_reg[3]); B0 = T0; B1 = T1; B2 = T2; B3 = T3; #endif } private: #if defined(BOTAN_SIMD_USE_SSE2) explicit SIMD_4x32(__m128i in) { m_reg = in; } #elif defined(BOTAN_SIMD_USE_ALTIVEC) explicit SIMD_4x32(__vector unsigned int input) { m_reg = input; } #endif #if defined(BOTAN_SIMD_USE_SSE2) __m128i m_reg; #elif defined(BOTAN_SIMD_USE_ALTIVEC) __vector unsigned int m_reg; #else uint32_t m_reg[4]; #endif }; typedef SIMD_4x32 SIMD_32; } #endif