/* * Policies for TLS * (C) 2004-2010,2012,2015,2016 Jack Lloyd * 2016 Christian Mainka * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include namespace Botan { namespace TLS { std::vector Policy::allowed_ciphers() const { return { //"AES-256/OCB(12)", //"AES-128/OCB(12)", "ChaCha20Poly1305", "AES-256/GCM", "AES-128/GCM", "AES-256/CCM", "AES-128/CCM", //"AES-256/CCM(8)", //"AES-128/CCM(8)", //"Camellia-256/GCM", //"Camellia-128/GCM", "AES-256", "AES-128", //"Camellia-256", //"Camellia-128", //"SEED" //"3DES", }; } std::vector Policy::allowed_signature_hashes() const { return { "SHA-512", "SHA-384", "SHA-256", //"SHA-1", }; } std::vector Policy::allowed_macs() const { /* SHA-256 is preferred because the Lucky13 countermeasure works somewhat better for SHA-256 vs SHA-384: https://github.com/randombit/botan/pull/675 */ return { "AEAD", "SHA-256", "SHA-384", "SHA-1", }; } std::vector Policy::allowed_key_exchange_methods() const { return { //"SRP_SHA", //"ECDHE_PSK", //"DHE_PSK", //"PSK", "CECPQ1", "ECDH", "DH", //"RSA", }; } std::vector Policy::allowed_signature_methods() const { return { "ECDSA", "RSA", //"DSA", //"" (anon) }; } bool Policy::allowed_signature_method(const std::string& sig_method) const { return value_exists(allowed_signature_methods(), sig_method); } std::vector Policy::allowed_ecc_curves() const { // Default list is ordered by performance return { "x25519", "secp256r1", "secp521r1", "secp384r1", "brainpool256r1", "brainpool384r1", "brainpool512r1", }; } bool Policy::allowed_ecc_curve(const std::string& curve) const { return value_exists(allowed_ecc_curves(), curve); } bool Policy::use_ecc_point_compression() const { return false; } /* * Choose an ECC curve to use */ std::string Policy::choose_curve(const std::vector& curve_names) const { const std::vector our_curves = allowed_ecc_curves(); for(size_t i = 0; i != our_curves.size(); ++i) if(value_exists(curve_names, our_curves[i])) return our_curves[i]; return ""; // no shared curve } std::string Policy::dh_group() const { // We offer 2048 bit DH because we can return "modp/ietf/2048"; } size_t Policy::minimum_dh_group_size() const { // Many servers still send 1024 bit return 1024; } size_t Policy::minimum_ecdsa_group_size() const { // Here we are at the mercy of whatever the CA signed, but most certs should be 256 bit by now return 256; } size_t Policy::minimum_ecdh_group_size() const { // x25519 is smallest curve currently supported for TLS key exchange return 255; } size_t Policy::minimum_signature_strength() const { return 110; } bool Policy::require_cert_revocation_info() const { return true; } size_t Policy::minimum_rsa_bits() const { /* Default assumption is all end-entity certificates should be at least 2048 bits these days. If you are connecting to arbitrary servers on the Internet (ie as a web browser or SMTP client) you'll probably have to reduce this to 1024 bits, or perhaps even lower. */ return 2048; } size_t Policy::minimum_dsa_group_size() const { // FIPS 186-3 return 2048; } void Policy::check_peer_key_acceptable(const Public_Key& public_key) const { const std::string algo_name = public_key.algo_name(); const size_t keylength = public_key.key_length(); size_t expected_keylength = 0; if(algo_name == "RSA") { expected_keylength = minimum_rsa_bits(); } else if(algo_name == "DH") { expected_keylength = minimum_dh_group_size(); } else if(algo_name == "DSA") { expected_keylength = minimum_dsa_group_size(); } else if(algo_name == "ECDH" || algo_name == "Curve25519") { expected_keylength = minimum_ecdh_group_size(); } else if(algo_name == "ECDSA") { expected_keylength = minimum_ecdsa_group_size(); } // else some other algo, so leave expected_keylength as zero and the check is a no-op if(keylength < expected_keylength) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "Peer sent " + std::to_string(keylength) + " bit " + algo_name + " key" ", policy requires at least " + std::to_string(expected_keylength)); } /* * Return allowed compression algorithms */ std::vector Policy::compression() const { return std::vector{ NO_COMPRESSION }; } u32bit Policy::session_ticket_lifetime() const { return 86400; // ~1 day } bool Policy::send_fallback_scsv(Protocol_Version version) const { return version != latest_supported_version(version.is_datagram_protocol()); } bool Policy::acceptable_protocol_version(Protocol_Version version) const { // Uses boolean optimization: // First check the current version (left part), then if it is allowed // (right part) // checks are ordered according to their probability return ( ( ( version == Protocol_Version::TLS_V12) && allow_tls12() ) || ( ( version == Protocol_Version::TLS_V10) && allow_tls10() ) || ( ( version == Protocol_Version::TLS_V11) && allow_tls11() ) || ( ( version == Protocol_Version::DTLS_V12) && allow_dtls12() ) || ( ( version == Protocol_Version::DTLS_V10) && allow_dtls10() ) ); } Protocol_Version Policy::latest_supported_version(bool datagram) const { if(datagram) return Protocol_Version::latest_dtls_version(); else return Protocol_Version::latest_tls_version(); } bool Policy::acceptable_ciphersuite(const Ciphersuite&) const { return true; } bool Policy::allow_server_initiated_renegotiation() const { return false; } bool Policy::allow_insecure_renegotiation() const { return false; } bool Policy::allow_tls10() const { return true; } bool Policy::allow_tls11() const { return true; } bool Policy::allow_tls12() const { return true; } bool Policy::allow_dtls10() const { return false; } bool Policy::allow_dtls12() const { return true; } bool Policy::include_time_in_hello_random() const { return true; } bool Policy::hide_unknown_users() const { return false; } bool Policy::server_uses_own_ciphersuite_preferences() const { return true; } bool Policy::negotiate_encrypt_then_mac() const { return true; } // 1 second initial timeout, 60 second max - see RFC 6347 sec 4.2.4.1 size_t Policy::dtls_initial_timeout() const { return 1*1000; } size_t Policy::dtls_maximum_timeout() const { return 60*1000; } size_t Policy::dtls_default_mtu() const { // default MTU is IPv6 min MTU minus UDP/IP headers return 1280 - 40 - 8; } std::vector Policy::srtp_profiles() const { return std::vector(); } namespace { class Ciphersuite_Preference_Ordering { public: Ciphersuite_Preference_Ordering(const std::vector& ciphers, const std::vector& macs, const std::vector& kex, const std::vector& sigs) : m_ciphers(ciphers), m_macs(macs), m_kex(kex), m_sigs(sigs) {} bool operator()(const Ciphersuite& a, const Ciphersuite& b) const { if(a.kex_algo() != b.kex_algo()) { for(size_t i = 0; i != m_kex.size(); ++i) { if(a.kex_algo() == m_kex[i]) return true; if(b.kex_algo() == m_kex[i]) return false; } } if(a.cipher_algo() != b.cipher_algo()) { for(size_t i = 0; i != m_ciphers.size(); ++i) { if(a.cipher_algo() == m_ciphers[i]) return true; if(b.cipher_algo() == m_ciphers[i]) return false; } } if(a.cipher_keylen() != b.cipher_keylen()) { if(a.cipher_keylen() < b.cipher_keylen()) return false; if(a.cipher_keylen() > b.cipher_keylen()) return true; } if(a.sig_algo() != b.sig_algo()) { for(size_t i = 0; i != m_sigs.size(); ++i) { if(a.sig_algo() == m_sigs[i]) return true; if(b.sig_algo() == m_sigs[i]) return false; } } if(a.mac_algo() != b.mac_algo()) { for(size_t i = 0; i != m_macs.size(); ++i) { if(a.mac_algo() == m_macs[i]) return true; if(b.mac_algo() == m_macs[i]) return false; } } return false; // equal (?!?) } private: std::vector m_ciphers, m_macs, m_kex, m_sigs; }; } std::vector Policy::ciphersuite_list(Protocol_Version version, bool have_srp) const { const std::vector ciphers = allowed_ciphers(); const std::vector macs = allowed_macs(); const std::vector kex = allowed_key_exchange_methods(); const std::vector sigs = allowed_signature_methods(); std::vector ciphersuites; for(auto&& suite : Ciphersuite::all_known_ciphersuites()) { // Can we use it? if(suite.valid() == false) continue; // Is it acceptable to the policy? if(!this->acceptable_ciphersuite(suite)) continue; // Are we doing SRP? if(!have_srp && suite.kex_algo() == "SRP_SHA") continue; // Are we doing AEAD in a non-AEAD version if(!version.supports_aead_modes() && suite.mac_algo() == "AEAD") continue; if(!value_exists(kex, suite.kex_algo())) continue; // unsupported key exchange if(!value_exists(ciphers, suite.cipher_algo())) continue; // unsupported cipher if(!value_exists(macs, suite.mac_algo())) continue; // unsupported MAC algo if(!value_exists(sigs, suite.sig_algo())) { // allow if it's an empty sig algo and we want to use PSK if(suite.sig_algo() != "" || !suite.psk_ciphersuite()) continue; } // OK, consider it ciphersuites.push_back(suite); } if(ciphersuites.empty()) throw Exception("Policy does not allow any available cipher suite"); Ciphersuite_Preference_Ordering order(ciphers, macs, kex, sigs); std::sort(ciphersuites.begin(), ciphersuites.end(), order); std::vector ciphersuite_codes; for(auto i : ciphersuites) ciphersuite_codes.push_back(i.ciphersuite_code()); return ciphersuite_codes; } namespace { void print_vec(std::ostream& o, const char* key, const std::vector& v) { o << key << " = "; for(size_t i = 0; i != v.size(); ++i) { o << v[i]; if(i != v.size() - 1) o << ' '; } o << '\n'; } void print_bool(std::ostream& o, const char* key, bool b) { o << key << " = " << (b ? "true" : "false") << '\n'; } } void Policy::print(std::ostream& o) const { print_bool(o, "allow_tls10", allow_tls10()); print_bool(o, "allow_tls11", allow_tls11()); print_bool(o, "allow_tls12", allow_tls12()); print_bool(o, "allow_dtls10", allow_dtls10()); print_bool(o, "allow_dtls12", allow_dtls12()); print_vec(o, "ciphers", allowed_ciphers()); print_vec(o, "macs", allowed_macs()); print_vec(o, "signature_hashes", allowed_signature_hashes()); print_vec(o, "signature_methods", allowed_signature_methods()); print_vec(o, "key_exchange_methods", allowed_key_exchange_methods()); print_vec(o, "ecc_curves", allowed_ecc_curves()); print_bool(o, "allow_insecure_renegotiation", allow_insecure_renegotiation()); print_bool(o, "include_time_in_hello_random", include_time_in_hello_random()); print_bool(o, "allow_server_initiated_renegotiation", allow_server_initiated_renegotiation()); print_bool(o, "hide_unknown_users", hide_unknown_users()); print_bool(o, "server_uses_own_ciphersuite_preferences", server_uses_own_ciphersuite_preferences()); print_bool(o, "negotiate_encrypt_then_mac", negotiate_encrypt_then_mac()); o << "session_ticket_lifetime = " << session_ticket_lifetime() << '\n'; o << "dh_group = " << dh_group() << '\n'; o << "minimum_dh_group_size = " << minimum_dh_group_size() << '\n'; o << "minimum_ecdh_group_size = " << minimum_ecdh_group_size() << '\n'; o << "minimum_rsa_bits = " << minimum_rsa_bits() << '\n'; o << "minimum_signature_strength = " << minimum_signature_strength() << '\n'; } std::string Policy::to_string() const { std::ostringstream oss; this->print(oss); return oss.str(); } std::vector Strict_Policy::allowed_ciphers() const { return { "ChaCha20Poly1305", "AES-256/GCM", "AES-128/GCM" }; } std::vector Strict_Policy::allowed_signature_hashes() const { return { "SHA-512", "SHA-384"}; } std::vector Strict_Policy::allowed_macs() const { return { "AEAD" }; } std::vector Strict_Policy::allowed_key_exchange_methods() const { return { "CECPQ1", "ECDH" }; } bool Strict_Policy::allow_tls10() const { return false; } bool Strict_Policy::allow_tls11() const { return false; } bool Strict_Policy::allow_tls12() const { return true; } bool Strict_Policy::allow_dtls10() const { return false; } bool Strict_Policy::allow_dtls12() const { return true; } } }