/* * ChaCha * (C) 2014,2018 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include namespace Botan { namespace { #define CHACHA_QUARTER_ROUND(a, b, c, d) \ do { \ a += b; d ^= a; d = rotl<16>(d); \ c += d; b ^= c; b = rotl<12>(b); \ a += b; d ^= a; d = rotl<8>(d); \ c += d; b ^= c; b = rotl<7>(b); \ } while(0) /* * Generate HChaCha cipher stream (for XChaCha IV setup) */ void hchacha(uint32_t output[8], const uint32_t input[16], size_t rounds) { BOTAN_ASSERT(rounds % 2 == 0, "Valid rounds"); uint32_t x00 = input[ 0], x01 = input[ 1], x02 = input[ 2], x03 = input[ 3], x04 = input[ 4], x05 = input[ 5], x06 = input[ 6], x07 = input[ 7], x08 = input[ 8], x09 = input[ 9], x10 = input[10], x11 = input[11], x12 = input[12], x13 = input[13], x14 = input[14], x15 = input[15]; for(size_t i = 0; i != rounds / 2; ++i) { CHACHA_QUARTER_ROUND(x00, x04, x08, x12); CHACHA_QUARTER_ROUND(x01, x05, x09, x13); CHACHA_QUARTER_ROUND(x02, x06, x10, x14); CHACHA_QUARTER_ROUND(x03, x07, x11, x15); CHACHA_QUARTER_ROUND(x00, x05, x10, x15); CHACHA_QUARTER_ROUND(x01, x06, x11, x12); CHACHA_QUARTER_ROUND(x02, x07, x08, x13); CHACHA_QUARTER_ROUND(x03, x04, x09, x14); } output[0] = x00; output[1] = x01; output[2] = x02; output[3] = x03; output[4] = x12; output[5] = x13; output[6] = x14; output[7] = x15; } } ChaCha::ChaCha(size_t rounds) : m_rounds(rounds) { BOTAN_ARG_CHECK(m_rounds == 8 || m_rounds == 12 || m_rounds == 20, "ChaCha only supports 8, 12 or 20 rounds"); } std::string ChaCha::provider() const { #if defined(BOTAN_HAS_CHACHA_AVX2) if(CPUID::has_avx2()) { return "avx2"; } #endif #if defined(BOTAN_HAS_CHACHA_SIMD32) if(CPUID::has_simd_32()) { return "simd32"; } #endif return "base"; } //static void ChaCha::chacha_x8(uint8_t output[64*8], uint32_t input[16], size_t rounds) { BOTAN_ASSERT(rounds % 2 == 0, "Valid rounds"); #if defined(BOTAN_HAS_CHACHA_AVX2) if(CPUID::has_avx2()) { return ChaCha::chacha_avx2_x8(output, input, rounds); } #endif #if defined(BOTAN_HAS_CHACHA_SIMD32) if(CPUID::has_simd_32()) { ChaCha::chacha_simd32_x4(output, input, rounds); ChaCha::chacha_simd32_x4(output + 4*64, input, rounds); return; } #endif // TODO interleave rounds for(size_t i = 0; i != 8; ++i) { uint32_t x00 = input[ 0], x01 = input[ 1], x02 = input[ 2], x03 = input[ 3], x04 = input[ 4], x05 = input[ 5], x06 = input[ 6], x07 = input[ 7], x08 = input[ 8], x09 = input[ 9], x10 = input[10], x11 = input[11], x12 = input[12], x13 = input[13], x14 = input[14], x15 = input[15]; for(size_t r = 0; r != rounds / 2; ++r) { CHACHA_QUARTER_ROUND(x00, x04, x08, x12); CHACHA_QUARTER_ROUND(x01, x05, x09, x13); CHACHA_QUARTER_ROUND(x02, x06, x10, x14); CHACHA_QUARTER_ROUND(x03, x07, x11, x15); CHACHA_QUARTER_ROUND(x00, x05, x10, x15); CHACHA_QUARTER_ROUND(x01, x06, x11, x12); CHACHA_QUARTER_ROUND(x02, x07, x08, x13); CHACHA_QUARTER_ROUND(x03, x04, x09, x14); } x00 += input[0]; x01 += input[1]; x02 += input[2]; x03 += input[3]; x04 += input[4]; x05 += input[5]; x06 += input[6]; x07 += input[7]; x08 += input[8]; x09 += input[9]; x10 += input[10]; x11 += input[11]; x12 += input[12]; x13 += input[13]; x14 += input[14]; x15 += input[15]; store_le(x00, output + 64 * i + 4 * 0); store_le(x01, output + 64 * i + 4 * 1); store_le(x02, output + 64 * i + 4 * 2); store_le(x03, output + 64 * i + 4 * 3); store_le(x04, output + 64 * i + 4 * 4); store_le(x05, output + 64 * i + 4 * 5); store_le(x06, output + 64 * i + 4 * 6); store_le(x07, output + 64 * i + 4 * 7); store_le(x08, output + 64 * i + 4 * 8); store_le(x09, output + 64 * i + 4 * 9); store_le(x10, output + 64 * i + 4 * 10); store_le(x11, output + 64 * i + 4 * 11); store_le(x12, output + 64 * i + 4 * 12); store_le(x13, output + 64 * i + 4 * 13); store_le(x14, output + 64 * i + 4 * 14); store_le(x15, output + 64 * i + 4 * 15); input[12]++; input[13] += (input[12] == 0); } } #undef CHACHA_QUARTER_ROUND /* * Combine cipher stream with message */ void ChaCha::cipher(const uint8_t in[], uint8_t out[], size_t length) { verify_key_set(m_state.empty() == false); while(length >= m_buffer.size() - m_position) { const size_t available = m_buffer.size() - m_position; xor_buf(out, in, &m_buffer[m_position], available); chacha_x8(m_buffer.data(), m_state.data(), m_rounds); length -= available; in += available; out += available; m_position = 0; } xor_buf(out, in, &m_buffer[m_position], length); m_position += length; } void ChaCha::write_keystream(uint8_t out[], size_t length) { verify_key_set(m_state.empty() == false); while(length >= m_buffer.size() - m_position) { const size_t available = m_buffer.size() - m_position; copy_mem(out, &m_buffer[m_position], available); chacha_x8(m_buffer.data(), m_state.data(), m_rounds); length -= available; out += available; m_position = 0; } copy_mem(out, &m_buffer[m_position], length); m_position += length; } void ChaCha::initialize_state() { static const uint32_t TAU[] = { 0x61707865, 0x3120646e, 0x79622d36, 0x6b206574 }; static const uint32_t SIGMA[] = { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 }; m_state[4] = m_key[0]; m_state[5] = m_key[1]; m_state[6] = m_key[2]; m_state[7] = m_key[3]; if(m_key.size() == 4) { m_state[0] = TAU[0]; m_state[1] = TAU[1]; m_state[2] = TAU[2]; m_state[3] = TAU[3]; m_state[8] = m_key[0]; m_state[9] = m_key[1]; m_state[10] = m_key[2]; m_state[11] = m_key[3]; } else { m_state[0] = SIGMA[0]; m_state[1] = SIGMA[1]; m_state[2] = SIGMA[2]; m_state[3] = SIGMA[3]; m_state[8] = m_key[4]; m_state[9] = m_key[5]; m_state[10] = m_key[6]; m_state[11] = m_key[7]; } m_state[12] = 0; m_state[13] = 0; m_state[14] = 0; m_state[15] = 0; m_position = 0; } /* * ChaCha Key Schedule */ void ChaCha::key_schedule(const uint8_t key[], size_t length) { m_key.resize(length / 4); load_le(m_key.data(), key, m_key.size()); m_state.resize(16); const size_t chacha_parallelism = 8; // chacha_x8 const size_t chacha_block = 64; m_buffer.resize(chacha_parallelism * chacha_block); set_iv(nullptr, 0); } size_t ChaCha::default_iv_length() const { return 24; } Key_Length_Specification ChaCha::key_spec() const { return Key_Length_Specification(16, 32, 16); } StreamCipher* ChaCha::clone() const { return new ChaCha(m_rounds); } bool ChaCha::valid_iv_length(size_t iv_len) const { return (iv_len == 0 || iv_len == 8 || iv_len == 12 || iv_len == 24); } void ChaCha::set_iv(const uint8_t iv[], size_t length) { verify_key_set(m_state.empty() == false); if(!valid_iv_length(length)) throw Invalid_IV_Length(name(), length); initialize_state(); if(length == 0) { // Treat zero length IV same as an all-zero IV m_state[14] = 0; m_state[15] = 0; } else if(length == 8) { m_state[14] = load_le(iv, 0); m_state[15] = load_le(iv, 1); } else if(length == 12) { m_state[13] = load_le(iv, 0); m_state[14] = load_le(iv, 1); m_state[15] = load_le(iv, 2); } else if(length == 24) { m_state[12] = load_le(iv, 0); m_state[13] = load_le(iv, 1); m_state[14] = load_le(iv, 2); m_state[15] = load_le(iv, 3); secure_vector hc(8); hchacha(hc.data(), m_state.data(), m_rounds); m_state[ 4] = hc[0]; m_state[ 5] = hc[1]; m_state[ 6] = hc[2]; m_state[ 7] = hc[3]; m_state[ 8] = hc[4]; m_state[ 9] = hc[5]; m_state[10] = hc[6]; m_state[11] = hc[7]; m_state[12] = 0; m_state[13] = 0; m_state[14] = load_le(iv, 4); m_state[15] = load_le(iv, 5); } chacha_x8(m_buffer.data(), m_state.data(), m_rounds); m_position = 0; } void ChaCha::clear() { zap(m_key); zap(m_state); zap(m_buffer); m_position = 0; } std::string ChaCha::name() const { return "ChaCha(" + std::to_string(m_rounds) + ")"; } void ChaCha::seek(uint64_t offset) { verify_key_set(m_state.empty() == false); // Find the block offset const uint64_t counter = offset / 64; uint8_t out[8]; store_le(counter, out); m_state[12] = load_le(out, 0); m_state[13] += load_le(out, 1); chacha_x8(m_buffer.data(), m_state.data(), m_rounds); m_position = offset % 64; } }