/* * Random Number Generator base classes * (C) 1999-2009,2015,2016 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #ifndef BOTAN_RANDOM_NUMBER_GENERATOR_H__ #define BOTAN_RANDOM_NUMBER_GENERATOR_H__ #include #include #include #include #include #include namespace Botan { class Entropy_Sources; /** * An interface to a cryptographic random number generator */ class BOTAN_DLL RandomNumberGenerator { public: virtual ~RandomNumberGenerator() = default; RandomNumberGenerator() = default; /* * Never copy a RNG, create a new one */ RandomNumberGenerator(const RandomNumberGenerator& rng) = delete; RandomNumberGenerator& operator=(const RandomNumberGenerator& rng) = delete; /** * Randomize a byte array. * @param output the byte array to hold the random output. * @param length the length of the byte array output in bytes. */ virtual void randomize(byte output[], size_t length) = 0; /** * Incorporate some additional data into the RNG state. For * example adding nonces or timestamps from a peer's protocol * message can help hedge against VM state rollback attacks. * A few RNG types do not accept any externally provided input, * in which case this function is a no-op. * * @param input a byte array containg the entropy to be added * @param length the length of the byte array in */ virtual void add_entropy(const byte input[], size_t length) = 0; /** * Incorporate some additional data into the RNG state. */ template void add_entropy_T(const T& t) { this->add_entropy(reinterpret_cast(&t), sizeof(T)); } /** * Incorporate entropy into the RNG state then produce output. * Some RNG types implement this using a single operation, default * calls add_entropy + randomize in sequence. * * Use this to further bind the outputs to your current * process/protocol state. For instance if generating a new key * for use in a session, include a session ID or other such * value. See NIST SP 800-90 A, B, C series for more ideas. * * @param output buffer to hold the random output * @param output_len size of the output buffer in bytes * @param input entropy buffer to incorporate * @param input_len size of the input buffer in bytes */ virtual void randomize_with_input(byte output[], size_t output_len, const byte input[], size_t input_len); /** * This calls `randomize_with_input` using some timestamps as extra input. * * For a stateful RNG using non-random but potentially unique data the * extra input can help protect against problems with fork, VM state * rollback, or other cases where somehow an RNG state is duplicated. If * both of the duplicated RNG states later incorporate a timestamp (and the * timestamps don't themselves repeat), their outputs will diverge. */ virtual void randomize_with_ts_input(byte output[], size_t output_len); /** * @return the name of this RNG type */ virtual std::string name() const = 0; /** * Clear all internally held values of this RNG * @post is_seeded() == false */ virtual void clear() = 0; /** * Check whether this RNG is seeded. * @return true if this RNG was already seeded, false otherwise. */ virtual bool is_seeded() const = 0; /** * Poll provided sources for up to poll_bits bits of entropy * or until the timeout expires. Returns estimate of the number * of bits collected. */ virtual size_t reseed(Entropy_Sources& srcs, size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS, std::chrono::milliseconds poll_timeout = BOTAN_RNG_RESEED_DEFAULT_TIMEOUT); /** * Reseed by reading specified bits from the RNG */ virtual void reseed_from_rng(RandomNumberGenerator& rng, size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS); // Some utility functions built on the interface above: /** * Return a random vector * @param bytes number of bytes in the result * @return randomized vector of length bytes */ secure_vector random_vec(size_t bytes) { secure_vector output(bytes); this->randomize(output.data(), output.size()); return output; } /** * Return a random byte * @return random byte */ byte next_byte() { byte b; this->randomize(&b, 1); return b; } /** * @return a random byte that is not the zero byte */ byte next_nonzero_byte() { byte b = this->next_byte(); while(b == 0) b = this->next_byte(); return b; } /** * Create a seeded and active RNG object for general application use * Added in 1.8.0 * Use AutoSeeded_RNG instead */ BOTAN_DEPRECATED("Use AutoSeeded_RNG") static RandomNumberGenerator* make_rng(); }; /** * Convenience typedef */ typedef RandomNumberGenerator RNG; /** * Hardware RNG has no members but exists to tag hardware RNG types */ class BOTAN_DLL Hardware_RNG : public RandomNumberGenerator { }; /** * Null/stub RNG - fails if you try to use it for anything * This is not generally useful except for in certain tests */ class BOTAN_DLL Null_RNG final : public RandomNumberGenerator { public: bool is_seeded() const override { return false; } void clear() override {} void randomize(byte[], size_t) override { throw Exception("Null_RNG called"); } void add_entropy(const byte[], size_t) override {} std::string name() const override { return "Null_RNG"; } }; #if defined(BOTAN_TARGET_OS_HAS_THREADS) /** * Wraps access to a RNG in a mutex * Note that most of the time it's much better to use a RNG per thread * otherwise the RNG will act as an unnecessary contention point */ class BOTAN_DLL Serialized_RNG final : public RandomNumberGenerator { public: void randomize(byte out[], size_t len) override { lock_guard_type lock(m_mutex); m_rng->randomize(out, len); } bool is_seeded() const override { lock_guard_type lock(m_mutex); return m_rng->is_seeded(); } void clear() override { lock_guard_type lock(m_mutex); m_rng->clear(); } std::string name() const override { lock_guard_type lock(m_mutex); return m_rng->name(); } size_t reseed(Entropy_Sources& src, size_t poll_bits = BOTAN_RNG_RESEED_POLL_BITS, std::chrono::milliseconds poll_timeout = BOTAN_RNG_RESEED_DEFAULT_TIMEOUT) override { lock_guard_type lock(m_mutex); return m_rng->reseed(src, poll_bits, poll_timeout); } void add_entropy(const byte in[], size_t len) override { lock_guard_type lock(m_mutex); m_rng->add_entropy(in, len); } BOTAN_DEPRECATED("Use Serialized_RNG(new AutoSeeded_RNG)") Serialized_RNG(); explicit Serialized_RNG(RandomNumberGenerator* rng) : m_rng(rng) {} private: mutable mutex_type m_mutex; std::unique_ptr m_rng; }; #endif } #endif