/* * Public Key Work Factor Functions * (C) 1999-2007,2012 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { size_t ecp_work_factor(size_t bits) { return bits / 2; } size_t if_work_factor(size_t bits) { // RFC 3766: k * e^((1.92 + o(1)) * cubrt(ln(n) * (ln(ln(n)))^2)) // It estimates k at .02 and o(1) to be effectively zero for sizes of interest const double k = .02; // approximates natural logarithm of p const double log2_e = std::log2(std::exp(1)); const double log_p = bits / log2_e; const double est = 1.92 * std::pow(log_p * std::log(log_p) * std::log(log_p), 1.0/3.0); return static_cast(std::log2(k) + log2_e * est); } size_t dl_work_factor(size_t bits) { // Lacking better estimates... return if_work_factor(bits); } size_t dl_exponent_size(size_t bits) { /* This uses a slightly tweaked version of the standard work factor function above. It assumes k is 1 (thus overestimating the strength of the prime group by 5-6 bits), and always returns at least 128 bits (this only matters for very small primes). */ const size_t MIN_WORKFACTOR = 64; const double log2_e = std::log2(std::exp(1)); const double log_p = bits / log2_e; const double strength = 1.92 * std::pow(log_p, 1.0/3.0) * std::pow(std::log(log_p), 2.0/3.0); return 2 * std::max(MIN_WORKFACTOR, static_cast(log2_e * strength)); } }