/* * RSA * (C) 1999-2010,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include #include #include namespace Botan { /* * Create a RSA private key */ RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng, size_t bits, size_t exp) { if(bits < 1024) throw Invalid_Argument(algo_name() + ": Can't make a key that is only " + std::to_string(bits) + " bits long"); if(exp < 3 || exp % 2 == 0) throw Invalid_Argument(algo_name() + ": Invalid encryption exponent"); m_e = exp; do { m_p = random_prime(rng, (bits + 1) / 2, m_e); m_q = random_prime(rng, bits - m_p.bits(), m_e); m_n = m_p * m_q; } while(m_n.bits() != bits); m_d = inverse_mod(m_e, lcm(m_p - 1, m_q - 1)); m_d1 = m_d % (m_p - 1); m_d2 = m_d % (m_q - 1); m_c = inverse_mod(m_q, m_p); gen_check(rng); } /* * Check Private RSA Parameters */ bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const { if(!IF_Scheme_PrivateKey::check_key(rng, strong)) return false; if(!strong) return true; if((m_e * m_d) % lcm(m_p - 1, m_q - 1) != 1) return false; return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-1)"); } namespace { /** * RSA private (decrypt/sign) operation */ class RSA_Private_Operation { protected: size_t get_max_input_bits() const { return (m_n.bits() - 1); } explicit RSA_Private_Operation(const RSA_PrivateKey& rsa) : m_n(rsa.get_n()), m_q(rsa.get_q()), m_c(rsa.get_c()), m_powermod_e_n(rsa.get_e(), rsa.get_n()), m_powermod_d1_p(rsa.get_d1(), rsa.get_p()), m_powermod_d2_q(rsa.get_d2(), rsa.get_q()), m_mod_p(rsa.get_p()), m_blinder(m_n, [this](const BigInt& k) { return m_powermod_e_n(k); }, [this](const BigInt& k) { return inverse_mod(k, m_n); }) { } BigInt blinded_private_op(const BigInt& m) const { if(m >= m_n) throw Invalid_Argument("RSA private op - input is too large"); return m_blinder.unblind(private_op(m_blinder.blind(m))); } BigInt private_op(const BigInt& m) const { auto future_j1 = std::async(std::launch::async, m_powermod_d1_p, m); BigInt j2 = m_powermod_d2_q(m); BigInt j1 = future_j1.get(); j1 = m_mod_p.reduce(sub_mul(j1, j2, m_c)); return mul_add(j1, m_q, j2); } const BigInt& m_n; const BigInt& m_q; const BigInt& m_c; Fixed_Exponent_Power_Mod m_powermod_e_n, m_powermod_d1_p, m_powermod_d2_q; Modular_Reducer m_mod_p; Blinder m_blinder; }; class RSA_Signature_Operation : public PK_Ops::Signature_with_EMSA, private RSA_Private_Operation { public: typedef RSA_PrivateKey Key_Type; size_t max_input_bits() const override { return get_max_input_bits(); }; RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa) : PK_Ops::Signature_with_EMSA(emsa), RSA_Private_Operation(rsa) { } secure_vector raw_sign(const byte msg[], size_t msg_len, RandomNumberGenerator&) override { const BigInt m(msg, msg_len); const BigInt x = blinded_private_op(m); const BigInt c = m_powermod_e_n(x); BOTAN_ASSERT(m == c, "RSA sign consistency check"); return BigInt::encode_1363(x, m_n.bytes()); } }; class RSA_Decryption_Operation : public PK_Ops::Decryption_with_EME, private RSA_Private_Operation { public: typedef RSA_PrivateKey Key_Type; size_t max_raw_input_bits() const override { return get_max_input_bits(); }; RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme) : PK_Ops::Decryption_with_EME(eme), RSA_Private_Operation(rsa) { } secure_vector raw_decrypt(const byte msg[], size_t msg_len) override { const BigInt m(msg, msg_len); const BigInt x = blinded_private_op(m); const BigInt c = m_powermod_e_n(x); BOTAN_ASSERT(m == c, "RSA decrypt consistency check"); return BigInt::encode_1363(x, m_n.bytes()); } }; class RSA_KEM_Decryption_Operation : public PK_Ops::KEM_Decryption_with_KDF, private RSA_Private_Operation { public: typedef RSA_PrivateKey Key_Type; RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key, const std::string& kdf) : PK_Ops::KEM_Decryption_with_KDF(kdf), RSA_Private_Operation(key) {} secure_vector raw_kem_decrypt(const byte encap_key[], size_t len) override { const BigInt m(encap_key, len); const BigInt x = blinded_private_op(m); const BigInt c = m_powermod_e_n(x); BOTAN_ASSERT(m == c, "RSA KEM consistency check"); return BigInt::encode_1363(x, m_n.bytes()); } }; /** * RSA public (encrypt/verify) operation */ class RSA_Public_Operation { public: explicit RSA_Public_Operation(const RSA_PublicKey& rsa) : m_n(rsa.get_n()), m_powermod_e_n(rsa.get_e(), rsa.get_n()) {} size_t get_max_input_bits() const { return (m_n.bits() - 1); } protected: BigInt public_op(const BigInt& m) const { if(m >= m_n) throw Invalid_Argument("RSA public op - input is too large"); return m_powermod_e_n(m); } const BigInt& get_n() const { return m_n; } const BigInt& m_n; Fixed_Exponent_Power_Mod m_powermod_e_n; }; class RSA_Encryption_Operation : public PK_Ops::Encryption_with_EME, private RSA_Public_Operation { public: typedef RSA_PublicKey Key_Type; RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) : PK_Ops::Encryption_with_EME(eme), RSA_Public_Operation(rsa) { } size_t max_raw_input_bits() const override { return get_max_input_bits(); }; secure_vector raw_encrypt(const byte msg[], size_t msg_len, RandomNumberGenerator&) override { BigInt m(msg, msg_len); return BigInt::encode_1363(public_op(m), m_n.bytes()); } }; class RSA_Verify_Operation : public PK_Ops::Verification_with_EMSA, private RSA_Public_Operation { public: typedef RSA_PublicKey Key_Type; size_t max_input_bits() const override { return get_max_input_bits(); }; RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) : PK_Ops::Verification_with_EMSA(emsa), RSA_Public_Operation(rsa) { } bool with_recovery() const override { return true; } secure_vector verify_mr(const byte msg[], size_t msg_len) override { BigInt m(msg, msg_len); return BigInt::encode_locked(public_op(m)); } }; class RSA_KEM_Encryption_Operation : public PK_Ops::KEM_Encryption_with_KDF, private RSA_Public_Operation { public: typedef RSA_PublicKey Key_Type; RSA_KEM_Encryption_Operation(const RSA_PublicKey& key, const std::string& kdf) : PK_Ops::KEM_Encryption_with_KDF(kdf), RSA_Public_Operation(key) {} private: void raw_kem_encrypt(secure_vector& out_encapsulated_key, secure_vector& raw_shared_key, Botan::RandomNumberGenerator& rng) override { const BigInt r = BigInt::random_integer(rng, 1, get_n()); const BigInt c = public_op(r); out_encapsulated_key = BigInt::encode_locked(c); raw_shared_key = BigInt::encode_locked(r); } }; BOTAN_REGISTER_PK_ENCRYPTION_OP("RSA", RSA_Encryption_Operation); BOTAN_REGISTER_PK_DECRYPTION_OP("RSA", RSA_Decryption_Operation); BOTAN_REGISTER_PK_SIGNATURE_OP("RSA", RSA_Signature_Operation); BOTAN_REGISTER_PK_VERIFY_OP("RSA", RSA_Verify_Operation); BOTAN_REGISTER_PK_KEM_ENCRYPTION_OP("RSA", RSA_KEM_Encryption_Operation); BOTAN_REGISTER_PK_KEM_DECRYPTION_OP("RSA", RSA_KEM_Decryption_Operation); } }