/* * PKCS #8 * (C) 1999-2010,2014 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include #include #include #include #include #include namespace Botan { namespace PKCS8 { namespace { /* * Get info from an EncryptedPrivateKeyInfo */ secure_vector PKCS8_extract(DataSource& source, AlgorithmIdentifier& pbe_alg_id) { secure_vector key_data; BER_Decoder(source) .start_cons(SEQUENCE) .decode(pbe_alg_id) .decode(key_data, OCTET_STRING) .verify_end(); return key_data; } /* * PEM decode and/or decrypt a private key */ secure_vector PKCS8_decode( DataSource& source, std::function get_passphrase, AlgorithmIdentifier& pk_alg_id, bool is_encrypted) { AlgorithmIdentifier pbe_alg_id; secure_vector key_data, key; try { if(ASN1::maybe_BER(source) && !PEM_Code::matches(source)) { if ( is_encrypted ) { key_data = PKCS8_extract(source, pbe_alg_id); } else { // todo read more efficiently while ( !source.end_of_data() ) { uint8_t b; size_t read = source.read_byte( b ); if ( read ) { key_data.push_back( b ); } } } } else { std::string label; key_data = PEM_Code::decode(source, label); // todo remove autodetect for pem as well? if(label == "PRIVATE KEY") is_encrypted = false; else if(label == "ENCRYPTED PRIVATE KEY") { DataSource_Memory key_source(key_data); key_data = PKCS8_extract(key_source, pbe_alg_id); } else throw PKCS8_Exception("Unknown PEM label " + label); } if(key_data.empty()) throw PKCS8_Exception("No key data found"); } catch(Decoding_Error& e) { throw Decoding_Error("PKCS #8 private key decoding failed: " + std::string(e.what())); } try { if(is_encrypted) { if(OIDS::lookup(pbe_alg_id.get_oid()) != "PBE-PKCS5v20") throw Exception("Unknown PBE type " + pbe_alg_id.get_oid().as_string()); key = pbes2_decrypt(key_data, get_passphrase(), pbe_alg_id.get_parameters()); } else key = key_data; BER_Decoder(key) .start_cons(SEQUENCE) .decode_and_check(0, "Unknown PKCS #8 version number") .decode(pk_alg_id) .decode(key, OCTET_STRING) .discard_remaining() .end_cons(); } catch(std::exception& e) { throw Decoding_Error("PKCS #8 private key decoding failed: " + std::string(e.what())); } return key; } } /* * BER encode a PKCS #8 private key, unencrypted */ secure_vector BER_encode(const Private_Key& key) { // keeping around for compat return key.private_key_info(); } /* * PEM encode a PKCS #8 private key, unencrypted */ std::string PEM_encode(const Private_Key& key) { return PEM_Code::encode(PKCS8::BER_encode(key), "PRIVATE KEY"); } namespace { std::pair choose_pbe_params(const std::string& pbe_algo, const std::string& key_algo) { if(pbe_algo.empty()) { // Defaults: if(key_algo == "Curve25519" || key_algo == "McEliece") return std::make_pair("AES-256/GCM", "SHA-512"); else // for everything else (RSA, DSA, ECDSA, GOST, ...) return std::make_pair("AES-256/CBC", "SHA-256"); } SCAN_Name request(pbe_algo); if(request.algo_name() != "PBE-PKCS5v20" || request.arg_count() != 2) throw Exception("Unsupported PBE " + pbe_algo); return std::make_pair(request.arg(1), request.arg(0)); } } /* * BER encode a PKCS #8 private key, encrypted */ std::vector BER_encode(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, std::chrono::milliseconds msec, const std::string& pbe_algo) { const auto pbe_params = choose_pbe_params(pbe_algo, key.algo_name()); const std::pair> pbe_info = pbes2_encrypt_msec(PKCS8::BER_encode(key), pass, msec, nullptr, pbe_params.first, pbe_params.second, rng); return DER_Encoder() .start_cons(SEQUENCE) .encode(pbe_info.first) .encode(pbe_info.second, OCTET_STRING) .end_cons() .get_contents_unlocked(); } /* * PEM encode a PKCS #8 private key, encrypted */ std::string PEM_encode(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, std::chrono::milliseconds msec, const std::string& pbe_algo) { if(pass.empty()) return PEM_encode(key); return PEM_Code::encode(PKCS8::BER_encode(key, rng, pass, msec, pbe_algo), "ENCRYPTED PRIVATE KEY"); } /* * BER encode a PKCS #8 private key, encrypted */ std::vector BER_encode_encrypted_pbkdf_iter(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, size_t pbkdf_iterations, const std::string& cipher, const std::string& pbkdf_hash) { const std::pair> pbe_info = pbes2_encrypt_iter(key.private_key_info(), pass, pbkdf_iterations, cipher.empty() ? "AES-256/CBC" : cipher, pbkdf_hash.empty() ? "SHA-256" : pbkdf_hash, rng); return DER_Encoder() .start_cons(SEQUENCE) .encode(pbe_info.first) .encode(pbe_info.second, OCTET_STRING) .end_cons() .get_contents_unlocked(); } /* * PEM encode a PKCS #8 private key, encrypted */ std::string PEM_encode_encrypted_pbkdf_iter(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, size_t pbkdf_iterations, const std::string& cipher, const std::string& pbkdf_hash) { return PEM_Code::encode( PKCS8::BER_encode_encrypted_pbkdf_iter(key, rng, pass, pbkdf_iterations, cipher, pbkdf_hash), "ENCRYPTED PRIVATE KEY"); } /* * BER encode a PKCS #8 private key, encrypted */ std::vector BER_encode_encrypted_pbkdf_msec(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, std::chrono::milliseconds pbkdf_msec, size_t* pbkdf_iterations, const std::string& cipher, const std::string& pbkdf_hash) { const std::pair> pbe_info = pbes2_encrypt_msec(key.private_key_info(), pass, pbkdf_msec, pbkdf_iterations, cipher.empty() ? "AES-256/CBC" : cipher, pbkdf_hash.empty() ? "SHA-256" : pbkdf_hash, rng); return DER_Encoder() .start_cons(SEQUENCE) .encode(pbe_info.first) .encode(pbe_info.second, OCTET_STRING) .end_cons() .get_contents_unlocked(); } /* * PEM encode a PKCS #8 private key, encrypted */ std::string PEM_encode_encrypted_pbkdf_msec(const Private_Key& key, RandomNumberGenerator& rng, const std::string& pass, std::chrono::milliseconds pbkdf_msec, size_t* pbkdf_iterations, const std::string& cipher, const std::string& pbkdf_hash) { return PEM_Code::encode( PKCS8::BER_encode_encrypted_pbkdf_msec(key, rng, pass, pbkdf_msec, pbkdf_iterations, cipher, pbkdf_hash), "ENCRYPTED PRIVATE KEY"); } namespace { /* * Extract a private key (encrypted/unencrypted) and return it */ std::unique_ptr load_key(DataSource& source, std::function get_pass, bool is_encrypted) { AlgorithmIdentifier alg_id; secure_vector pkcs8_key = PKCS8_decode(source, get_pass, alg_id, is_encrypted); const std::string alg_name = OIDS::lookup(alg_id.get_oid()); if(alg_name.empty() || alg_name == alg_id.get_oid().as_string()) throw PKCS8_Exception("Unknown algorithm OID: " + alg_id.get_oid().as_string()); return load_private_key(alg_id, pkcs8_key); } } /* * Extract an encrypted private key and return it */ std::unique_ptr load_key(DataSource& source, std::function get_pass) { return load_key(source, get_pass, true); } /* * Extract an encrypted private key and return it */ std::unique_ptr load_key(DataSource& source, const std::string& pass) { return load_key(source, [pass]() { return pass; }, true); } /* * Extract an unencrypted private key and return it */ std::unique_ptr load_key(DataSource& source) { auto fail_fn = []() -> std::string { throw PKCS8_Exception("Internal error: Attempt to read password for unencrypted key"); }; return load_key(source, fail_fn, false); } /* * Make a copy of this private key */ std::unique_ptr copy_key(const Private_Key& key) { DataSource_Memory source(PEM_encode(key)); return PKCS8::load_key(source); } /* * Extract an encrypted private key and return it */ Private_Key* load_key(DataSource& source, RandomNumberGenerator& rng, std::function get_pass) { BOTAN_UNUSED(rng); return PKCS8::load_key(source, get_pass).release(); } /* * Extract an encrypted private key and return it */ Private_Key* load_key(DataSource& source, RandomNumberGenerator& rng, const std::string& pass) { BOTAN_UNUSED(rng); return PKCS8::load_key(source, pass).release(); } /* * Extract an unencrypted private key and return it */ Private_Key* load_key(DataSource& source, RandomNumberGenerator& rng) { BOTAN_UNUSED(rng); return PKCS8::load_key(source).release(); } #if defined(BOTAN_TARGET_OS_HAS_FILESYSTEM) /* * Extract an encrypted private key and return it */ Private_Key* load_key(const std::string& fsname, RandomNumberGenerator& rng, std::function get_pass) { BOTAN_UNUSED(rng); DataSource_Stream in(fsname); return PKCS8::load_key(in, get_pass).release(); } /* * Extract an encrypted private key and return it */ Private_Key* load_key(const std::string& fsname, RandomNumberGenerator& rng, const std::string& pass) { BOTAN_UNUSED(rng); DataSource_Stream in(fsname); return PKCS8::load_key(in, [pass]() { return pass; }).release(); } /* * Extract an unencrypted private key and return it */ Private_Key* load_key(const std::string& fsname, RandomNumberGenerator& rng) { BOTAN_UNUSED(rng); DataSource_Stream in(fsname); return PKCS8::load_key(in).release(); } #endif /* * Make a copy of this private key */ Private_Key* copy_key(const Private_Key& key, RandomNumberGenerator& rng) { BOTAN_UNUSED(rng); return PKCS8::copy_key(key).release(); } } }