/* * (C) Copyright Projet SECRET, INRIA, Rocquencourt * (C) Bhaskar Biswas and Nicolas Sendrier * * (C) 2014 cryptosource GmbH * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { #define MAX_EXT_DEG 16 namespace { unsigned int prim_poly[MAX_EXT_DEG + 1] = { 01, /* extension degree 0 (!) never used */ 03, /* extension degree 1 (!) never used */ 07, /* extension degree 2 */ 013, /* extension degree 3 */ 023, /* extension degree 4 */ 045, /* extension degree 5 */ 0103, /* extension degree 6 */ 0203, /* extension degree 7 */ 0435, /* extension degree 8 */ 01041, /* extension degree 9 */ 02011, /* extension degree 10 */ 04005, /* extension degree 11 */ 010123, /* extension degree 12 */ 020033, /* extension degree 13 */ 042103, /* extension degree 14 */ 0100003, /* extension degree 15 */ 0210013 /* extension degree 16 */ }; std::vector gf_exp_table(size_t deg, gf2m prime_poly) { // construct the table gf_exp[i]=alpha^i std::vector tab((1 << deg) + 1); tab[0] = 1; for(size_t i = 1; i < tab.size(); ++i) { const bool overflow = tab[i - 1] >> (deg - 1); tab[i] = (tab[i-1] << 1) ^ (overflow ? prime_poly : 0); } return tab; } const std::vector& exp_table(size_t deg) { static std::vector tabs[MAX_EXT_DEG + 1]; if(deg < 2 || deg > MAX_EXT_DEG) throw Exception("GF2m_Field does not support degree " + std::to_string(deg)); if(tabs[deg].empty()) tabs[deg] = gf_exp_table(deg, prim_poly[deg]); return tabs[deg]; } std::vector gf_log_table(size_t deg, const std::vector& exp) { std::vector tab(1 << deg); tab[0] = (1 << deg) - 1; // log of 0 is the order by convention for (size_t i = 0; i < tab.size(); ++i) { tab[exp[i]] = i; } return tab; } const std::vector& log_table(size_t deg) { static std::vector tabs[MAX_EXT_DEG + 1]; if(deg < 2 || deg > MAX_EXT_DEG) throw Exception("GF2m_Field does not support degree " + std::to_string(deg)); if(tabs[deg].empty()) tabs[deg] = gf_log_table(deg, exp_table(deg)); return tabs[deg]; } } u32bit encode_gf2m(gf2m to_enc, byte* mem) { mem[0] = to_enc >> 8; mem[1] = to_enc & 0xFF; return sizeof(to_enc); } gf2m decode_gf2m(const byte* mem) { gf2m result; result = mem[0] << 8; result |= mem[1]; return result; } GF2m_Field::GF2m_Field(size_t extdeg) : m_gf_extension_degree(extdeg), m_gf_multiplicative_order((1 << extdeg) - 1), m_gf_log_table(log_table(m_gf_extension_degree)), m_gf_exp_table(exp_table(m_gf_extension_degree)) { } gf2m GF2m_Field::gf_div(gf2m x, gf2m y) const { const s32bit sub_res = static_cast(gf_log(x) - static_cast(gf_log(y))); const s32bit modq_res = static_cast(_gf_modq_1(sub_res)); const s32bit div_res = static_cast(x) ? static_cast(gf_exp(modq_res)) : 0; return static_cast(div_res); } // we suppose i >= 0. Par convention 0^0 = 1 gf2m GF2m_Field::gf_pow(gf2m x, int i) const { if (i == 0) return 1; else if (x == 0) return 0; else { // i mod (q-1) while (i >> get_extension_degree()) i = (i & (gf_ord())) + (i >> get_extension_degree()); i *= gf_log(x); while (i >> get_extension_degree()) i = (i & (gf_ord())) + (i >> get_extension_degree()); return gf_exp(i); } } }