/* * (C) 2014 cryptosource GmbH * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de * * Botan is released under the Simplified BSD License (see license.txt) * */ #include #include #include #include namespace Botan { namespace { u32bit patch_root_array(gf2m* res_root_arr, u32bit res_root_arr_len, u32bit root_pos) { volatile u32bit i; volatile gf2m patch_elem = 0x01; volatile gf2m cond_mask = (root_pos == res_root_arr_len); cond_mask = expand_mask_16bit(cond_mask); cond_mask = ~cond_mask; /* now cond = 1 if not enough roots */ patch_elem &= cond_mask; for(i = 0; i < res_root_arr_len; i++) { gf2m masked_patch_elem = (patch_elem++) & cond_mask; res_root_arr[i] ^= masked_patch_elem++; } return res_root_arr_len; } class gf2m_decomp_rootfind_state { public: gf2m_decomp_rootfind_state(const polyn_gf2m & p_polyn, u32bit code_length); void calc_LiK(const polyn_gf2m & sigma); gf2m calc_Fxj_j_neq_0( const polyn_gf2m & sigma, gf2m j_gray); void calc_next_Aij(); void calc_Ai_zero(const polyn_gf2m & sigma); secure_vector find_roots(const polyn_gf2m & sigma); u32bit get_code_length() const { return code_length; }; u32bit code_length; secure_vector m_Lik; // size is outer_summands * m secure_vector m_Aij; // ... u32bit m_outer_summands; gf2m m_j; gf2m m_j_gray; gf2m m_sigma_3_l; gf2m m_sigma_3_neq_0_mask; }; /* * !! Attention: assumes gf2m is 16bit !! */ #if 0 gf2m brootf_decomp__gray_to_lex(gf2m gray) { static_assert(sizeof(gf2m) == 2, "Expected size"); gf2m result = gray ^ (gray>>8); result ^= (result >> 4); result ^= (result >> 2); result ^= (result >> 1); return result; } #endif /** * calculates ceil((t-4)/5) = outer_summands - 1 */ u32bit brootf_decomp__calc_sum_limit(u32bit t) { u32bit result; if(t < 4) { return 0; } result = t - 4; result += 4; result /= 5; return result; } gf2m_decomp_rootfind_state::gf2m_decomp_rootfind_state(const polyn_gf2m & polyn, u32bit the_code_length) : code_length(the_code_length), m_j(0), m_j_gray(0) { gf2m coeff_3; gf2m coeff_head; std::shared_ptr sp_field = polyn.get_sp_field(); int deg_sigma = polyn.get_degree(); if(deg_sigma <= 3) { throw Internal_Error("Unexpected degree in gf2m_decomp_rootfind_state"); } coeff_3 = polyn.get_coef( 3); coeff_head = polyn.get_coef( deg_sigma); /* dummy value for SCA CM */ if(coeff_3 != 0) { this->m_sigma_3_l = sp_field->gf_l_from_n(coeff_3); this->m_sigma_3_neq_0_mask = 0xFFFF; } else { // dummy value needed for timing countermeasure this->m_sigma_3_l = sp_field->gf_l_from_n(coeff_head); this->m_sigma_3_neq_0_mask = 0 ; } this->m_outer_summands = 1 + brootf_decomp__calc_sum_limit(deg_sigma); this->m_Lik.resize(this->m_outer_summands * sp_field->get_extension_degree()); this->m_Aij.resize(this->m_outer_summands); } void gf2m_decomp_rootfind_state::calc_Ai_zero(const polyn_gf2m & sigma) { u32bit i; /* * this function assumes this the first gray code element is zero */ for(i = 0; i < this->m_outer_summands; i++) { this->m_Aij[i] = sigma.get_coef(5*i); } this->m_j = 0; this->m_j_gray = 0; } void gf2m_decomp_rootfind_state::calc_next_Aij() { /* * upon function entry, we have in the state j, Aij. * first thing, we declare Aij Aij_minusone and increase j. * Case j=0 upon function entry also included, then Aij contains A_{i,j=0}. */ u32bit i; gf2m diff, new_j_gray; u32bit Lik_pos_base; this->m_j++; new_j_gray = lex_to_gray(this->m_j); if(this->m_j & 1) /* half of the times */ { Lik_pos_base = 0; } else if(this->m_j & 2) /* one quarter of the times */ { Lik_pos_base = this->m_outer_summands; } else if( this->m_j & 4) /* one eighth of the times */ { Lik_pos_base = this->m_outer_summands * 2; } else if( this->m_j & 8) /* one sixteenth of the times */ { Lik_pos_base = this->m_outer_summands * 3; } else if( this->m_j & 16) /* ... */ { Lik_pos_base = this->m_outer_summands * 4; } else { gf2m delta_offs = 5; diff = this->m_j_gray ^ new_j_gray; while(((static_cast(1) << delta_offs) & diff) == 0) { delta_offs++; } Lik_pos_base = delta_offs * this->m_outer_summands; } this->m_j_gray = new_j_gray; i = 0; for(; i < this->m_outer_summands; i++) { this->m_Aij[i] ^= this->m_Lik[Lik_pos_base + i]; } } void gf2m_decomp_rootfind_state::calc_LiK(const polyn_gf2m & sigma) { std::shared_ptr sp_field = sigma.get_sp_field(); u32bit i, k, d; d = sigma.get_degree(); for(k = 0; k < sp_field->get_extension_degree(); k++) { u32bit Lik_pos_base = k * this->m_outer_summands; gf2m alpha_l_k_tt2_ttj[4]; alpha_l_k_tt2_ttj[0] = sp_field->gf_l_from_n(static_cast(1) << k); alpha_l_k_tt2_ttj[1] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[0], alpha_l_k_tt2_ttj[0]); alpha_l_k_tt2_ttj[2] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[1],alpha_l_k_tt2_ttj[1] ); alpha_l_k_tt2_ttj[3] = sp_field->gf_mul_rrr(alpha_l_k_tt2_ttj[2], alpha_l_k_tt2_ttj[2]); for(i = 0; i < this->m_outer_summands; i++) { u32bit j; u32bit five_i = 5*i; u32bit Lik_pos = Lik_pos_base + i; this->m_Lik[Lik_pos] = 0; for(j = 0; j <= 3; j++) { gf2m f, x; u32bit f_ind = five_i + (static_cast(1) << j); if(f_ind > d) { break; } f = sigma.get_coef( f_ind); x = sp_field->gf_mul_zrz(alpha_l_k_tt2_ttj[j], f); this->m_Lik[Lik_pos] ^= x; } } } } gf2m gf2m_decomp_rootfind_state::calc_Fxj_j_neq_0( const polyn_gf2m & sigma, gf2m j_gray) { //needs the A_{ij} to compute F(x)_j gf2m sum = 0; u32bit i; std::shared_ptr sp_field = sigma.get_sp_field(); const gf2m jl_gray = sp_field->gf_l_from_n(j_gray); gf2m xl_j_tt_5 = sp_field->gf_square_rr(jl_gray); gf2m xl_gray_tt_3 = sp_field->gf_mul_rrr(xl_j_tt_5, jl_gray); xl_j_tt_5 = sp_field->gf_mul_rrr(xl_j_tt_5, xl_gray_tt_3); sum = sp_field->gf_mul_nrr(xl_gray_tt_3, this->m_sigma_3_l); sum &= this->m_sigma_3_neq_0_mask; /* here, we rely on compiler to be unable to optimize * for the state->sigma_3_neq_0_mask value */ /* treat i = 0 special: */ sum ^= this->m_Aij[0]; /* treat i = 1 special also */ if(this->m_outer_summands > 1) { gf2m x; x = sp_field->gf_mul_zrz(xl_j_tt_5, this->m_Aij[1]); /* x_j^{5i} A_i^j */ sum ^= x; } gf2m xl_j_tt_5i = xl_j_tt_5; for(i = 2; i < this->m_outer_summands; i++) { gf2m x; xl_j_tt_5i = sp_field->gf_mul_rrr(xl_j_tt_5i, xl_j_tt_5); // now x_j_tt_5i lives up to its name x = sp_field->gf_mul_zrz(xl_j_tt_5i, this->m_Aij[i]); /* x_j^{5i} A_i^(j) */ sum ^= x; } return sum; } secure_vector gf2m_decomp_rootfind_state::find_roots(const polyn_gf2m & sigma) { const int sigma_degree = sigma.get_degree(); BOTAN_ASSERT(sigma_degree > 0, "Valid sigma"); secure_vector result(sigma_degree); u32bit root_pos = 0; this->calc_Ai_zero(sigma); this->calc_LiK(sigma); do { gf2m eval_result; if(this->m_j_gray == 0) { eval_result = sigma.get_coef( 0); } else { eval_result = this->calc_Fxj_j_neq_0(sigma, this->m_j_gray); } if(eval_result == 0) { result[root_pos] = this->m_j_gray; root_pos++; } if(this->m_j + static_cast(1) == this->get_code_length()) { break; } this->calc_next_Aij(); }while(1); // side channel / fault attack countermeasure: root_pos = patch_root_array(result.data(), result.size(), root_pos); result.resize(root_pos); return result; } } // end anonymous namespace secure_vector find_roots_gf2m_decomp(const polyn_gf2m & polyn, u32bit code_length) { gf2m_decomp_rootfind_state state(polyn, code_length); return state.find_roots(polyn); } } // end namespace Botan