/* * (C) Copyright Projet SECRET, INRIA, Rocquencourt * (C) Bhaskar Biswas and Nicolas Sendrier * * (C) 2014 cryptosource GmbH * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de * (C) 2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) * */ #include #include #include #include namespace Botan { namespace { class binary_matrix final { public: binary_matrix(uint32_t m_rown, uint32_t m_coln); void row_xor(uint32_t a, uint32_t b); secure_vector row_reduced_echelon_form(); /** * return the coefficient out of F_2 */ uint32_t coef(uint32_t i, uint32_t j) { return (m_elem[(i) * m_rwdcnt + (j) / 32] >> (j % 32)) & 1; } void set_coef_to_one(uint32_t i, uint32_t j) { m_elem[(i) * m_rwdcnt + (j) / 32] |= (static_cast(1) << ((j) % 32)) ; } void toggle_coeff(uint32_t i, uint32_t j) { m_elem[(i) * m_rwdcnt + (j) / 32] ^= (static_cast(1) << ((j) % 32)) ; } //private: uint32_t m_rown; // number of rows. uint32_t m_coln; // number of columns. uint32_t m_rwdcnt; // number of words in a row std::vector m_elem; }; binary_matrix::binary_matrix (uint32_t rown, uint32_t coln) { m_coln = coln; m_rown = rown; m_rwdcnt = 1 + ((m_coln - 1) / 32); m_elem = std::vector(m_rown * m_rwdcnt); } void binary_matrix::row_xor(uint32_t a, uint32_t b) { uint32_t i; for(i=0;i binary_matrix::row_reduced_echelon_form() { uint32_t i, failcnt, findrow, max=m_coln - 1; secure_vector perm(m_coln); for(i=0;i=0;j--)//fill the column with 0's upwards too. { if(coef(j,(max))) { row_xor(j,i); } } } }//end for(i) return perm; } void randomize_support(std::vector& L, RandomNumberGenerator& rng) { for(uint32_t i = 0; i != L.size(); ++i) { gf2m rnd = random_gf2m(rng); // no rejection sampling, but for useful code-based parameters with n <= 13 this seem tolerable std::swap(L[i], L[rnd % L.size()]); } } std::unique_ptr generate_R(std::vector &L, polyn_gf2m* g, std::shared_ptr sp_field, uint32_t code_length, uint32_t t ) { //L- Support //t- Number of errors //n- Length of the Goppa code //m- The extension degree of the GF //g- The generator polynomial. gf2m x,y; uint32_t i,j,k,r,n; std::vector Laux(code_length); n=code_length; r=t*sp_field->get_extension_degree(); binary_matrix H(r, n) ; for(i=0;i< n;i++) { x = g->eval(lex_to_gray(L[i]));//evaluate the polynomial at the point L[i]. x = sp_field->gf_inv(x); y = x; for(j=0;jget_extension_degree();k++) { if(y & (1<get_extension_degree()+ k,i); } } y = sp_field->gf_mul(y,lex_to_gray(L[i])); } }//The H matrix is fed. secure_vector perm = H.row_reduced_echelon_form(); if (perm.size() == 0) { // result still is NULL throw Invalid_State("could not bring matrix in row reduced echelon form"); } std::unique_ptr result(new binary_matrix(n-r,r)) ; for (i = 0; i < (*result).m_rown; ++i) { for (j = 0; j < (*result).m_coln; ++j) { if (H.coef(j,perm[i])) { result->toggle_coeff(i,j); } } } for (i = 0; i < code_length; ++i) { Laux[i] = L[perm[i]]; } for (i = 0; i < code_length; ++i) { L[i] = Laux[i]; } return result; } } McEliece_PrivateKey generate_mceliece_key( RandomNumberGenerator & rng, uint32_t ext_deg, uint32_t code_length, uint32_t t) { uint32_t i, j, k, l; std::unique_ptr R; uint32_t codimension = t * ext_deg; if(code_length <= codimension) { throw Invalid_Argument("invalid McEliece parameters"); } std::shared_ptr sp_field ( new GF2m_Field(ext_deg )); //pick the support......... std::vector L(code_length); for(i=0;i sqrtmod = polyn_gf2m::sqrt_mod_init( g); std::vector F = syndrome_init(g, L, code_length); // Each F[i] is the (precomputed) syndrome of the error vector with // a single '1' in i-th position. // We do not store the F[i] as polynomials of degree t , but // as binary vectors of length ext_deg * t (this will // speed up the syndrome computation) // // std::vector H(bit_size_to_32bit_size(codimension) * code_length ); uint32_t* sk = H.data(); for (i = 0; i < code_length; ++i) { for (l = 0; l < t; ++l) { k = (l * ext_deg) / 32; j = (l * ext_deg) % 32; sk[k] ^= static_cast(F[i].get_coef(l)) << j; if (j + ext_deg > 32) { sk[k + 1] ^= F[i].get_coef( l) >> (32 - j); } } sk += bit_size_to_32bit_size(codimension); } // We need the support L for decoding (decryption). In fact the // inverse is needed std::vector Linv(code_length) ; for (i = 0; i < code_length; ++i) { Linv[L[i]] = i; } std::vector pubmat (R->m_elem.size() * 4); for(i = 0; i < R->m_elem.size(); i++) { store_le(R->m_elem[i], &pubmat[i*4]); } return McEliece_PrivateKey(g, H, sqrtmod, Linv, pubmat); } }