/* * ECGDSA (BSI-TR-03111, version 2.0) * (C) 2016 René Korthaus * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include namespace Botan { bool ECGDSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const { if(!public_point().on_the_curve()) return false; if(!strong) return true; return KeyPair::signature_consistency_check(rng, *this, "EMSA1(SHA-256)"); } namespace { /** * ECGDSA signature operation */ class ECGDSA_Signature_Operation : public PK_Ops::Signature_with_EMSA { public: ECGDSA_Signature_Operation(const ECGDSA_PrivateKey& ecgdsa, const std::string& emsa) : PK_Ops::Signature_with_EMSA(emsa), m_order(ecgdsa.domain().get_order()), m_base_point(ecgdsa.domain().get_base_point(), m_order), m_x(ecgdsa.private_value()), m_mod_order(m_order) { } secure_vector raw_sign(const byte msg[], size_t msg_len, RandomNumberGenerator& rng) override; size_t max_input_bits() const override { return m_order.bits(); } private: const BigInt& m_order; Blinded_Point_Multiply m_base_point; const BigInt& m_x; Modular_Reducer m_mod_order; }; secure_vector ECGDSA_Signature_Operation::raw_sign(const byte msg[], size_t msg_len, RandomNumberGenerator& rng) { const BigInt m(msg, msg_len); BigInt k = BigInt::random_integer(rng, 1, m_order); const PointGFp k_times_P = m_base_point.blinded_multiply(k, rng); const BigInt r = m_mod_order.reduce(k_times_P.get_affine_x()); const BigInt s = m_mod_order.multiply(m_x, mul_sub(k, r, m)); // With overwhelming probability, a bug rather than actual zero r/s BOTAN_ASSERT(s != 0, "invalid s"); BOTAN_ASSERT(r != 0, "invalid r"); return BigInt::encode_fixed_length_int_pair(r, s, m_order.bytes()); } /** * ECGDSA verification operation */ class ECGDSA_Verification_Operation : public PK_Ops::Verification_with_EMSA { public: ECGDSA_Verification_Operation(const ECGDSA_PublicKey& ecgdsa, const std::string& emsa) : PK_Ops::Verification_with_EMSA(emsa), m_base_point(ecgdsa.domain().get_base_point()), m_public_point(ecgdsa.public_point()), m_order(ecgdsa.domain().get_order()), m_mod_order(m_order) { } size_t max_input_bits() const override { return m_order.bits(); } bool with_recovery() const override { return false; } bool verify(const byte msg[], size_t msg_len, const byte sig[], size_t sig_len) override; private: const PointGFp& m_base_point; const PointGFp& m_public_point; const BigInt& m_order; // FIXME: should be offered by curve Modular_Reducer m_mod_order; }; bool ECGDSA_Verification_Operation::verify(const byte msg[], size_t msg_len, const byte sig[], size_t sig_len) { if(sig_len != m_order.bytes()*2) return false; BigInt e(msg, msg_len); BigInt r(sig, sig_len / 2); BigInt s(sig + sig_len / 2, sig_len / 2); if(r <= 0 || r >= m_order || s <= 0 || s >= m_order) return false; BigInt w = inverse_mod(r, m_order); const BigInt u1 = m_mod_order.reduce(e * w); const BigInt u2 = m_mod_order.reduce(s * w); const PointGFp R = multi_exponentiate(m_base_point, u1, m_public_point, u2); if(R.is_zero()) return false; const BigInt v = m_mod_order.reduce(R.get_affine_x()); return (v == r); } } std::unique_ptr ECGDSA_PublicKey::create_verification_op(const std::string& params, const std::string& provider) const { if(provider == "base" || provider.empty()) return std::unique_ptr(new ECGDSA_Verification_Operation(*this, params)); throw Provider_Not_Found(algo_name(), provider); } std::unique_ptr ECGDSA_PrivateKey::create_signature_op(RandomNumberGenerator& /*rng*/, const std::string& params, const std::string& provider) const { if(provider == "base" || provider.empty()) return std::unique_ptr(new ECGDSA_Signature_Operation(*this, params)); throw Provider_Not_Found(algo_name(), provider); } }