/* * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2011,2012,2014,2015,2018 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : m_curve(curve), m_coord_x(0), m_coord_y(curve.get_1_rep()), m_coord_z(0) { // Assumes Montgomery rep of zero is zero } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : m_curve(curve), m_coord_x(x), m_coord_y(y), m_coord_z(m_curve.get_1_rep()) { if(x <= 0 || x >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine x"); if(y <= 0 || y >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine y"); secure_vector monty_ws(m_curve.get_ws_size()); m_curve.to_rep(m_coord_x, monty_ws); m_curve.to_rep(m_coord_y, monty_ws); } void PointGFp::randomize_repr(RandomNumberGenerator& rng) { secure_vector ws(m_curve.get_ws_size()); randomize_repr(rng, ws); } void PointGFp::randomize_repr(RandomNumberGenerator& rng, secure_vector& ws) { const BigInt mask = BigInt::random_integer(rng, 2, m_curve.get_p()); /* * No reason to convert this to Montgomery representation first, * just pretend the random mask was chosen as Redc(mask) and the * random mask we generated above is in the Montgomery * representation. * //m_curve.to_rep(mask, ws); */ const BigInt mask2 = m_curve.sqr_to_tmp(mask, ws); const BigInt mask3 = m_curve.mul_to_tmp(mask2, mask, ws); m_coord_x = m_curve.mul_to_tmp(m_coord_x, mask2, ws); m_coord_y = m_curve.mul_to_tmp(m_coord_y, mask3, ws); m_coord_z = m_curve.mul_to_tmp(m_coord_z, mask, ws); } namespace { inline void resize_ws(std::vector& ws_bn, size_t cap_size) { BOTAN_ASSERT(ws_bn.size() >= PointGFp::WORKSPACE_SIZE, "Expected size for PointGFp workspace"); for(size_t i = 0; i != ws_bn.size(); ++i) if(ws_bn[i].size() < cap_size) ws_bn[i].get_word_vector().resize(cap_size); } inline word all_zeros(const word x[], size_t len) { word z = 0; for(size_t i = 0; i != len; ++i) z |= x[i]; return CT::Mask::is_zero(z).value(); } } void PointGFp::add_affine(const word x_words[], size_t x_size, const word y_words[], size_t y_size, std::vector& ws_bn) { if(all_zeros(x_words, x_size) & all_zeros(y_words, y_size)) { return; } if(is_zero()) { m_coord_x.set_words(x_words, x_size); m_coord_y.set_words(y_words, y_size); m_coord_z = m_curve.get_1_rep(); return; } resize_ws(ws_bn, m_curve.get_ws_size()); secure_vector& ws = ws_bn[0].get_word_vector(); secure_vector& sub_ws = ws_bn[1].get_word_vector(); BigInt& T0 = ws_bn[2]; BigInt& T1 = ws_bn[3]; BigInt& T2 = ws_bn[4]; BigInt& T3 = ws_bn[5]; BigInt& T4 = ws_bn[6]; /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 simplified with Z2 = 1 */ const BigInt& p = m_curve.get_p(); m_curve.sqr(T3, m_coord_z, ws); // z1^2 m_curve.mul(T4, x_words, x_size, T3, ws); // x2*z1^2 m_curve.mul(T2, m_coord_z, T3, ws); // z1^3 m_curve.mul(T0, y_words, y_size, T2, ws); // y2*z1^3 T4.mod_sub(m_coord_x, p, sub_ws); // x2*z1^2 - x1*z2^2 T0.mod_sub(m_coord_y, p, sub_ws); if(T4.is_zero()) { if(T0.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x.clear(); m_coord_y = m_curve.get_1_rep(); m_coord_z.clear(); return; } m_curve.sqr(T2, T4, ws); m_curve.mul(T3, m_coord_x, T2, ws); m_curve.mul(T1, T2, T4, ws); m_curve.sqr(m_coord_x, T0, ws); m_coord_x.mod_sub(T1, p, sub_ws); m_coord_x.mod_sub(T3, p, sub_ws); m_coord_x.mod_sub(T3, p, sub_ws); T3.mod_sub(m_coord_x, p, sub_ws); m_curve.mul(T2, T0, T3, ws); m_curve.mul(T0, m_coord_y, T1, ws); T2.mod_sub(T0, p, sub_ws); m_coord_y.swap(T2); m_curve.mul(T0, m_coord_z, T4, ws); m_coord_z.swap(T0); } void PointGFp::add(const word x_words[], size_t x_size, const word y_words[], size_t y_size, const word z_words[], size_t z_size, std::vector& ws_bn) { if(all_zeros(x_words, x_size) & all_zeros(z_words, z_size)) return; if(is_zero()) { m_coord_x.set_words(x_words, x_size); m_coord_y.set_words(y_words, y_size); m_coord_z.set_words(z_words, z_size); return; } resize_ws(ws_bn, m_curve.get_ws_size()); secure_vector& ws = ws_bn[0].get_word_vector(); secure_vector& sub_ws = ws_bn[1].get_word_vector(); BigInt& T0 = ws_bn[2]; BigInt& T1 = ws_bn[3]; BigInt& T2 = ws_bn[4]; BigInt& T3 = ws_bn[5]; BigInt& T4 = ws_bn[6]; BigInt& T5 = ws_bn[7]; /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ const BigInt& p = m_curve.get_p(); m_curve.sqr(T0, z_words, z_size, ws); // z2^2 m_curve.mul(T1, m_coord_x, T0, ws); // x1*z2^2 m_curve.mul(T3, z_words, z_size, T0, ws); // z2^3 m_curve.mul(T2, m_coord_y, T3, ws); // y1*z2^3 m_curve.sqr(T3, m_coord_z, ws); // z1^2 m_curve.mul(T4, x_words, x_size, T3, ws); // x2*z1^2 m_curve.mul(T5, m_coord_z, T3, ws); // z1^3 m_curve.mul(T0, y_words, y_size, T5, ws); // y2*z1^3 T4.mod_sub(T1, p, sub_ws); // x2*z1^2 - x1*z2^2 T0.mod_sub(T2, p, sub_ws); if(T4.is_zero()) { if(T0.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x.clear(); m_coord_y = m_curve.get_1_rep(); m_coord_z.clear(); return; } m_curve.sqr(T5, T4, ws); m_curve.mul(T3, T1, T5, ws); m_curve.mul(T1, T5, T4, ws); m_curve.sqr(m_coord_x, T0, ws); m_coord_x.mod_sub(T1, p, sub_ws); m_coord_x.mod_sub(T3, p, sub_ws); m_coord_x.mod_sub(T3, p, sub_ws); T3.mod_sub(m_coord_x, p, sub_ws); m_curve.mul(m_coord_y, T0, T3, ws); m_curve.mul(T3, T2, T1, ws); m_coord_y.mod_sub(T3, p, sub_ws); m_curve.mul(T3, z_words, z_size, m_coord_z, ws); m_curve.mul(m_coord_z, T3, T4, ws); } void PointGFp::mult2i(size_t iterations, std::vector& ws_bn) { if(iterations == 0) return; if(m_coord_y.is_zero()) { *this = PointGFp(m_curve); // setting myself to zero return; } /* TODO we can save 2 squarings per iteration by computing a*Z^4 using values cached from previous iteration */ for(size_t i = 0; i != iterations; ++i) mult2(ws_bn); } // *this *= 2 void PointGFp::mult2(std::vector& ws_bn) { if(is_zero()) return; if(m_coord_y.is_zero()) { *this = PointGFp(m_curve); // setting myself to zero return; } resize_ws(ws_bn, m_curve.get_ws_size()); secure_vector& ws = ws_bn[0].get_word_vector(); secure_vector& sub_ws = ws_bn[1].get_word_vector(); BigInt& T0 = ws_bn[2]; BigInt& T1 = ws_bn[3]; BigInt& T2 = ws_bn[4]; BigInt& T3 = ws_bn[5]; BigInt& T4 = ws_bn[6]; /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc */ const BigInt& p = m_curve.get_p(); m_curve.sqr(T0, m_coord_y, ws); m_curve.mul(T1, m_coord_x, T0, ws); T1.mod_mul(4, p, sub_ws); if(m_curve.a_is_zero()) { // if a == 0 then 3*x^2 + a*z^4 is just 3*x^2 m_curve.sqr(T4, m_coord_x, ws); // x^2 T4.mod_mul(3, p, sub_ws); // 3*x^2 } else if(m_curve.a_is_minus_3()) { /* if a == -3 then 3*x^2 + a*z^4 == 3*x^2 - 3*z^4 == 3*(x^2-z^4) == 3*(x-z^2)*(x+z^2) */ m_curve.sqr(T3, m_coord_z, ws); // z^2 // (x-z^2) T2 = m_coord_x; T2.mod_sub(T3, p, sub_ws); // (x+z^2) T3.mod_add(m_coord_x, p, sub_ws); m_curve.mul(T4, T2, T3, ws); // (x-z^2)*(x+z^2) T4.mod_mul(3, p, sub_ws); // 3*(x-z^2)*(x+z^2) } else { m_curve.sqr(T3, m_coord_z, ws); // z^2 m_curve.sqr(T4, T3, ws); // z^4 m_curve.mul(T3, m_curve.get_a_rep(), T4, ws); // a*z^4 m_curve.sqr(T4, m_coord_x, ws); // x^2 T4.mod_mul(3, p, sub_ws); T4.mod_add(T3, p, sub_ws); // 3*x^2 + a*z^4 } m_curve.sqr(T2, T4, ws); T2.mod_sub(T1, p, sub_ws); T2.mod_sub(T1, p, sub_ws); m_curve.sqr(T3, T0, ws); T3.mod_mul(8, p, sub_ws); T1.mod_sub(T2, p, sub_ws); m_curve.mul(T0, T4, T1, ws); T0.mod_sub(T3, p, sub_ws); m_coord_x.swap(T2); m_curve.mul(T2, m_coord_y, m_coord_z, ws); T2.mod_mul(2, p, sub_ws); m_coord_y.swap(T0); m_coord_z.swap(T2); } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { std::vector ws(PointGFp::WORKSPACE_SIZE); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { *this = scalar * *this; return *this; } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { BOTAN_DEBUG_ASSERT(point.on_the_curve()); const size_t scalar_bits = scalar.bits(); std::vector ws(PointGFp::WORKSPACE_SIZE); PointGFp R[2] = { point.zero(), point }; for(size_t i = scalar_bits; i > 0; i--) { const size_t b = scalar.get_bit(i - 1); R[b ^ 1].add(R[b], ws); R[b].mult2(ws); } if(scalar.is_negative()) R[0].negate(); BOTAN_DEBUG_ASSERT(R[0].on_the_curve()); return R[0]; } //static void PointGFp::force_all_affine(std::vector& points, secure_vector& ws) { if(points.size() <= 1) { for(size_t i = 0; i != points.size(); ++i) points[i].force_affine(); return; } /* For >= 2 points use Montgomery's trick See Algorithm 2.26 in "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) TODO is it really necessary to save all k points in c? */ const CurveGFp& curve = points[0].m_curve; const BigInt& rep_1 = curve.get_1_rep(); if(ws.size() < curve.get_ws_size()) ws.resize(curve.get_ws_size()); std::vector c(points.size()); c[0] = points[0].m_coord_z; for(size_t i = 1; i != points.size(); ++i) { curve.mul(c[i], c[i-1], points[i].m_coord_z, ws); } BigInt s_inv = curve.invert_element(c[c.size()-1], ws); BigInt z_inv, z2_inv, z3_inv; for(size_t i = points.size() - 1; i != 0; i--) { PointGFp& point = points[i]; curve.mul(z_inv, s_inv, c[i-1], ws); s_inv = curve.mul_to_tmp(s_inv, point.m_coord_z, ws); curve.sqr(z2_inv, z_inv, ws); curve.mul(z3_inv, z2_inv, z_inv, ws); point.m_coord_x = curve.mul_to_tmp(point.m_coord_x, z2_inv, ws); point.m_coord_y = curve.mul_to_tmp(point.m_coord_y, z3_inv, ws); point.m_coord_z = rep_1; } curve.sqr(z2_inv, s_inv, ws); curve.mul(z3_inv, z2_inv, s_inv, ws); points[0].m_coord_x = curve.mul_to_tmp(points[0].m_coord_x, z2_inv, ws); points[0].m_coord_y = curve.mul_to_tmp(points[0].m_coord_y, z3_inv, ws); points[0].m_coord_z = rep_1; } void PointGFp::force_affine() { if(is_zero()) throw Invalid_State("Cannot convert zero ECC point to affine"); secure_vector ws; const BigInt z_inv = m_curve.invert_element(m_coord_z, ws); const BigInt z2_inv = m_curve.sqr_to_tmp(z_inv, ws); const BigInt z3_inv = m_curve.mul_to_tmp(z_inv, z2_inv, ws); m_coord_x = m_curve.mul_to_tmp(m_coord_x, z2_inv, ws); m_coord_y = m_curve.mul_to_tmp(m_coord_y, z3_inv, ws); m_coord_z = m_curve.get_1_rep(); } bool PointGFp::is_affine() const { return m_curve.is_one(m_coord_z); } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); secure_vector monty_ws; if(is_affine()) return m_curve.from_rep(m_coord_x, monty_ws); BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws); z2 = m_curve.invert_element(z2, monty_ws); BigInt r; m_curve.mul(r, m_coord_x, z2, monty_ws); m_curve.from_rep(r, monty_ws); return r; } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); secure_vector monty_ws; if(is_affine()) return m_curve.from_rep(m_coord_y, monty_ws); const BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws); const BigInt z3 = m_curve.mul_to_tmp(m_coord_z, z2, monty_ws); const BigInt z3_inv = m_curve.invert_element(z3, monty_ws); BigInt r; m_curve.mul(r, m_coord_y, z3_inv, monty_ws); m_curve.from_rep(r, monty_ws); return r; } bool PointGFp::on_the_curve() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return true. If somehow the state is corrupted, which suggests a fault attack (or internal computational error), then return false. */ if(is_zero()) return true; secure_vector monty_ws; const BigInt y2 = m_curve.from_rep(m_curve.sqr_to_tmp(m_coord_y, monty_ws), monty_ws); const BigInt x3 = m_curve.mul_to_tmp(m_coord_x, m_curve.sqr_to_tmp(m_coord_x, monty_ws), monty_ws); const BigInt ax = m_curve.mul_to_tmp(m_coord_x, m_curve.get_a_rep(), monty_ws); const BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws); if(m_coord_z == z2) // Is z equal to 1 (in Montgomery form)? { if(y2 != m_curve.from_rep(x3 + ax + m_curve.get_b_rep(), monty_ws)) return false; } const BigInt z3 = m_curve.mul_to_tmp(m_coord_z, z2, monty_ws); const BigInt ax_z4 = m_curve.mul_to_tmp(ax, m_curve.sqr_to_tmp(z2, monty_ws), monty_ws); const BigInt b_z6 = m_curve.mul_to_tmp(m_curve.get_b_rep(), m_curve.sqr_to_tmp(z3, monty_ws), monty_ws); if(y2 != m_curve.from_rep(x3 + ax_z4 + b_z6, monty_ws)) return false; return true; } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { m_curve.swap(other.m_curve); m_coord_x.swap(other.m_coord_x); m_coord_y.swap(other.m_coord_y); m_coord_z.swap(other.m_coord_z); } bool PointGFp::operator==(const PointGFp& other) const { if(m_curve != other.m_curve) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding std::vector PointGFp::encode(PointGFp::Compression_Type format) const { if(is_zero()) return std::vector(1); // single 0 byte const size_t p_bytes = m_curve.get_p().bytes(); const BigInt x = get_affine_x(); const BigInt y = get_affine_y(); std::vector result; if(format == PointGFp::UNCOMPRESSED) { result.resize(1 + 2*p_bytes); result[0] = 0x04; BigInt::encode_1363(&result[1], p_bytes, x); BigInt::encode_1363(&result[1+p_bytes], p_bytes, y); } else if(format == PointGFp::COMPRESSED) { result.resize(1 + p_bytes); result[0] = 0x02 | static_cast(y.get_bit(0)); BigInt::encode_1363(&result[1], p_bytes, x); } else if(format == PointGFp::HYBRID) { result.resize(1 + 2*p_bytes); result[0] = 0x06 | static_cast(y.get_bit(0)); BigInt::encode_1363(&result[1], p_bytes, x); BigInt::encode_1363(&result[1+p_bytes], p_bytes, y); } else throw Invalid_Argument("EC2OSP illegal point encoding"); return result; } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const BigInt& curve_p, const BigInt& curve_a, const BigInt& curve_b) { BigInt xpow3 = x * x * x; BigInt g = curve_a * x; g += xpow3; g += curve_b; g = g % curve_p; BigInt z = ressol(g, curve_p); if(z < 0) throw Illegal_Point("error during EC point decompression"); if(z.get_bit(0) != yMod2) z = curve_p - z; return z; } } PointGFp OS2ECP(const uint8_t data[], size_t data_len, const CurveGFp& curve) { // Should we really be doing this? if(data_len <= 1) return PointGFp(curve); // return zero std::pair xy = OS2ECP(data, data_len, curve.get_p(), curve.get_a(), curve.get_b()); PointGFp point(curve, xy.first, xy.second); if(!point.on_the_curve()) throw Illegal_Point("OS2ECP: Decoded point was not on the curve"); return point; } std::pair OS2ECP(const uint8_t data[], size_t data_len, const BigInt& curve_p, const BigInt& curve_a, const BigInt& curve_b) { if(data_len <= 1) throw Decoding_Error("OS2ECP invalid point"); const uint8_t pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); const bool y_mod_2 = ((pc & 0x01) == 1); y = decompress_point(y_mod_2, x, curve_p, curve_a, curve_b); } else if(pc == 4) { const size_t l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const size_t l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); const bool y_mod_2 = ((pc & 0x01) == 1); if(decompress_point(y_mod_2, x, curve_p, curve_a, curve_b) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type " + std::to_string(pc)); return std::make_pair(x, y); } }