/* * ECDSA and ECDH via OpenSSL * (C) 2015,2016 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #if defined(BOTAN_HAS_ECC_PUBLIC_KEY_CRYPTO) #include #include #include #include #endif #if defined(BOTAN_HAS_ECDSA) #include #endif #if defined(BOTAN_HAS_ECDH) #include #endif #include #include #if !defined(OPENSSL_NO_EC) #include #endif #if !defined(OPENSSL_NO_ECDSA) #include #endif #if !defined(OPENSSL_NO_ECDH) #include #endif namespace Botan { #if defined(BOTAN_HAS_ECC_PUBLIC_KEY_CRYPTO) namespace { secure_vector PKCS8_for_openssl(const EC_PrivateKey& ec) { const PointGFp& pub_key = ec.public_point(); const BigInt& priv_key = ec.private_value(); return DER_Encoder() .start_cons(SEQUENCE) .encode(static_cast(1)) .encode(BigInt::encode_1363(priv_key, priv_key.bytes()), OCTET_STRING) .start_cons(ASN1_Tag(0), PRIVATE) .raw_bytes(ec.domain().DER_encode(EC_DOMPAR_ENC_OID)) .end_cons() .start_cons(ASN1_Tag(1), PRIVATE) .encode(pub_key.encode(PointGFp::UNCOMPRESSED), BIT_STRING) .end_cons() .end_cons() .get_contents(); } int OpenSSL_EC_curve_builtin(int nid) { // the NID macro is still defined even though the curve may not be // supported, so we need to check the list of builtin curves at runtime EC_builtin_curve builtin_curves[100]; size_t num = 0; if (!(num = EC_get_builtin_curves(builtin_curves, sizeof(builtin_curves)))) { return -1; } for(size_t i = 0; i < num; ++i) { if(builtin_curves[i].nid == nid) { return nid; } } return -1; } int OpenSSL_EC_nid_for(const OID& oid) { if(oid.empty()) return -1; const std::string name = OIDS::lookup(oid); if(name == "secp192r1") return OpenSSL_EC_curve_builtin(NID_X9_62_prime192v1); if(name == "secp224r1") return OpenSSL_EC_curve_builtin(NID_secp224r1); if(name == "secp256r1") return OpenSSL_EC_curve_builtin(NID_X9_62_prime256v1); if(name == "secp384r1") return OpenSSL_EC_curve_builtin(NID_secp384r1); if(name == "secp521r1") return OpenSSL_EC_curve_builtin(NID_secp521r1); // OpenSSL 1.0.2 added brainpool curves #if OPENSSL_VERSION_NUMBER >= 0x1000200fL if(name == "brainpool160r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP160r1); if(name == "brainpool192r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP192r1); if(name == "brainpool224r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP224r1); if(name == "brainpool256r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP256r1); if(name == "brainpool320r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP320r1); if(name == "brainpool384r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP384r1); if(name == "brainpool512r1") return OpenSSL_EC_curve_builtin(NID_brainpoolP512r1); #endif return -1; } } #endif #if defined(BOTAN_HAS_ECDSA) && !defined(OPENSSL_NO_ECDSA) namespace { class OpenSSL_ECDSA_Verification_Operation final : public PK_Ops::Verification_with_EMSA { public: OpenSSL_ECDSA_Verification_Operation(const ECDSA_PublicKey& ecdsa, const std::string& emsa, int nid) : PK_Ops::Verification_with_EMSA(emsa), m_ossl_ec(::EC_KEY_new(), ::EC_KEY_free) { std::unique_ptr<::EC_GROUP, std::function> grp(::EC_GROUP_new_by_curve_name(nid), ::EC_GROUP_free); if(!grp) throw OpenSSL_Error("EC_GROUP_new_by_curve_name", ERR_get_error()); if(!::EC_KEY_set_group(m_ossl_ec.get(), grp.get())) throw OpenSSL_Error("EC_KEY_set_group", ERR_get_error()); const std::vector enc = ecdsa.public_point().encode(PointGFp::UNCOMPRESSED); const uint8_t* enc_ptr = enc.data(); EC_KEY* key_ptr = m_ossl_ec.get(); if(!::o2i_ECPublicKey(&key_ptr, &enc_ptr, enc.size())) throw OpenSSL_Error("o2i_ECPublicKey", ERR_get_error()); const EC_GROUP* group = ::EC_KEY_get0_group(m_ossl_ec.get()); m_order_bits = ::EC_GROUP_get_degree(group); } size_t max_input_bits() const override { return m_order_bits; } bool with_recovery() const override { return false; } bool verify(const uint8_t msg[], size_t msg_len, const uint8_t sig_bytes[], size_t sig_len) override { const size_t order_bytes = (m_order_bits + 7) / 8; if(sig_len != 2 * order_bytes) return false; std::unique_ptr> sig(nullptr, ECDSA_SIG_free); sig.reset(::ECDSA_SIG_new()); #if OPENSSL_VERSION_NUMBER < 0x10100000L sig->r = BN_bin2bn(sig_bytes , sig_len / 2, sig->r); sig->s = BN_bin2bn(sig_bytes + sig_len / 2, sig_len / 2, sig->s); #else BIGNUM* r = BN_bin2bn(sig_bytes , sig_len / 2, nullptr); BIGNUM* s = BN_bin2bn(sig_bytes + sig_len / 2, sig_len / 2, nullptr); if(r == nullptr || s == nullptr) throw OpenSSL_Error("BN_bin2bn sig s", ERR_get_error()); ECDSA_SIG_set0(sig.get(), r, s); #endif const int res = ECDSA_do_verify(msg, msg_len, sig.get(), m_ossl_ec.get()); if(res < 0) { int err = ERR_get_error(); bool hard_error = true; #if defined(EC_R_BAD_SIGNATURE) if(ERR_GET_REASON(err) == EC_R_BAD_SIGNATURE) hard_error = false; #endif #if defined(EC_R_POINT_AT_INFINITY) if(ERR_GET_REASON(err) == EC_R_POINT_AT_INFINITY) hard_error = false; #endif #if defined(ECDSA_R_BAD_SIGNATURE) if(ERR_GET_REASON(err) == ECDSA_R_BAD_SIGNATURE) hard_error = false; #endif if(hard_error) throw OpenSSL_Error("ECDSA_do_verify", err); } return (res == 1); } private: std::unique_ptr> m_ossl_ec; size_t m_order_bits = 0; }; class OpenSSL_ECDSA_Signing_Operation final : public PK_Ops::Signature_with_EMSA { public: OpenSSL_ECDSA_Signing_Operation(const ECDSA_PrivateKey& ecdsa, const std::string& emsa) : PK_Ops::Signature_with_EMSA(emsa), m_ossl_ec(nullptr, ::EC_KEY_free) { const secure_vector der = PKCS8_for_openssl(ecdsa); const uint8_t* der_ptr = der.data(); m_ossl_ec.reset(d2i_ECPrivateKey(nullptr, &der_ptr, der.size())); if(!m_ossl_ec) throw OpenSSL_Error("d2i_ECPrivateKey", ERR_get_error()); const EC_GROUP* group = ::EC_KEY_get0_group(m_ossl_ec.get()); m_order_bits = ::EC_GROUP_get_degree(group); m_order_bytes = (m_order_bits + 7) / 8; } size_t signature_length() const override { return 2*m_order_bytes; } secure_vector raw_sign(const uint8_t msg[], size_t msg_len, RandomNumberGenerator&) override { std::unique_ptr> sig(nullptr, ECDSA_SIG_free); sig.reset(::ECDSA_do_sign(msg, msg_len, m_ossl_ec.get())); if(!sig) throw OpenSSL_Error("ECDSA_do_sign", ERR_get_error()); #if OPENSSL_VERSION_NUMBER < 0x10100000L const BIGNUM* r = sig->r; const BIGNUM* s = sig->s; #else const BIGNUM* r; const BIGNUM* s; ECDSA_SIG_get0(sig.get(), &r, &s); #endif const size_t r_bytes = BN_num_bytes(r); const size_t s_bytes = BN_num_bytes(s); secure_vector sigval(2*m_order_bytes); BN_bn2bin(r, &sigval[m_order_bytes - r_bytes]); BN_bn2bin(s, &sigval[2*m_order_bytes - s_bytes]); return sigval; } size_t max_input_bits() const override { return m_order_bits; } private: std::unique_ptr> m_ossl_ec; size_t m_order_bits; size_t m_order_bytes; }; } std::unique_ptr make_openssl_ecdsa_ver_op(const ECDSA_PublicKey& key, const std::string& params) { const int nid = OpenSSL_EC_nid_for(key.domain().get_curve_oid()); if(nid < 0) { throw Lookup_Error("OpenSSL ECDSA does not support this curve"); } try { return std::unique_ptr(new OpenSSL_ECDSA_Verification_Operation(key, params, nid)); } catch(OpenSSL_Error&) { throw Lookup_Error("OpenSSL ECDSA does not support this key"); } } std::unique_ptr make_openssl_ecdsa_sig_op(const ECDSA_PrivateKey& key, const std::string& params) { const int nid = OpenSSL_EC_nid_for(key.domain().get_curve_oid()); if(nid < 0) { throw Lookup_Error("OpenSSL ECDSA does not support this curve"); } return std::unique_ptr(new OpenSSL_ECDSA_Signing_Operation(key, params)); } #endif #if defined(BOTAN_HAS_ECDH) && !defined(OPENSSL_NO_ECDH) namespace { class OpenSSL_ECDH_KA_Operation final : public PK_Ops::Key_Agreement_with_KDF { public: OpenSSL_ECDH_KA_Operation(const ECDH_PrivateKey& ecdh, const std::string& kdf) : PK_Ops::Key_Agreement_with_KDF(kdf), m_ossl_ec(::EC_KEY_new(), ::EC_KEY_free) { m_value_size = ecdh.domain().get_p_bytes(); const secure_vector der = PKCS8_for_openssl(ecdh); const uint8_t* der_ptr = der.data(); m_ossl_ec.reset(d2i_ECPrivateKey(nullptr, &der_ptr, der.size())); if(!m_ossl_ec) throw OpenSSL_Error("d2i_ECPrivateKey", ERR_get_error()); } size_t agreed_value_size() const override { return m_value_size; } secure_vector raw_agree(const uint8_t w[], size_t w_len) override { const EC_GROUP* group = ::EC_KEY_get0_group(m_ossl_ec.get()); const size_t out_len = (::EC_GROUP_get_degree(group) + 7) / 8; secure_vector out(out_len); EC_POINT* pub_key = ::EC_POINT_new(group); if(!pub_key) throw OpenSSL_Error("EC_POINT_new", ERR_get_error()); const int os2ecp_rc = ::EC_POINT_oct2point(group, pub_key, w, w_len, nullptr); if(os2ecp_rc != 1) throw OpenSSL_Error("EC_POINT_oct2point", ERR_get_error()); const int ecdh_rc = ::ECDH_compute_key(out.data(), out.size(), pub_key, m_ossl_ec.get(), /*KDF*/nullptr); if(ecdh_rc <= 0) throw OpenSSL_Error("ECDH_compute_key", ERR_get_error()); const size_t ecdh_sz = static_cast(ecdh_rc); if(ecdh_sz > out.size()) throw Internal_Error("OpenSSL ECDH returned more than requested"); out.resize(ecdh_sz); return out; } private: std::unique_ptr> m_ossl_ec; size_t m_value_size; }; } std::unique_ptr make_openssl_ecdh_ka_op(const ECDH_PrivateKey& key, const std::string& params) { const int nid = OpenSSL_EC_nid_for(key.domain().get_curve_oid()); if(nid < 0) { throw Lookup_Error("OpenSSL ECDH does not support this curve"); } return std::unique_ptr(new OpenSSL_ECDH_KA_Operation(key, params)); } #endif }