/* * OAEP * (C) 1999-2010,2015,2018 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include namespace Botan { /* * OAEP Pad Operation */ secure_vector OAEP::pad(const uint8_t in[], size_t in_length, size_t key_length, RandomNumberGenerator& rng) const { key_length /= 8; if(in_length > maximum_input_size(key_length * 8)) { throw Invalid_Argument("OAEP: Input is too large"); } secure_vector out(key_length); rng.randomize(out.data(), m_Phash.size()); buffer_insert(out, m_Phash.size(), m_Phash.data(), m_Phash.size()); out[out.size() - in_length - 1] = 0x01; buffer_insert(out, out.size() - in_length, in, in_length); mgf1_mask(*m_mgf1_hash, out.data(), m_Phash.size(), &out[m_Phash.size()], out.size() - m_Phash.size()); mgf1_mask(*m_mgf1_hash, &out[m_Phash.size()], out.size() - m_Phash.size(), out.data(), m_Phash.size()); return out; } /* * OAEP Unpad Operation */ secure_vector OAEP::unpad(uint8_t& valid_mask, const uint8_t in[], size_t in_length) const { /* Must be careful about error messages here; if an attacker can distinguish them, it is easy to use the differences as an oracle to find the secret key, as described in "A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0", James Manger, Crypto 2001 Also have to be careful about timing attacks! Pointed out by Falko Strenzke. According to the standard (Section 7.1.1), the encryptor always creates a message as follows: i. Concatenate a single octet with hexadecimal value 0x00, maskedSeed, and maskedDB to form an encoded message EM of length k octets as EM = 0x00 || maskedSeed || maskedDB. where k is the length of the modulus N. Therefore, the first byte can always be skipped safely. */ const uint8_t skip_first = CT::Mask::is_zero(in[0]).if_set_return(1); secure_vector input(in + skip_first, in + in_length); const size_t hlen = m_Phash.size(); mgf1_mask(*m_mgf1_hash, &input[hlen], input.size() - hlen, input.data(), hlen); mgf1_mask(*m_mgf1_hash, input.data(), hlen, &input[hlen], input.size() - hlen); return oaep_find_delim(valid_mask, input.data(), input.size(), m_Phash); } secure_vector oaep_find_delim(uint8_t& valid_mask, const uint8_t input[], size_t input_len, const secure_vector& Phash) { const size_t hlen = Phash.size(); // Too short to be valid, reject immediately if(input_len < 1 + 2*hlen) { return secure_vector(); } CT::poison(input, input_len); size_t delim_idx = 2 * hlen; CT::Mask waiting_for_delim = CT::Mask::set(); CT::Mask bad_input_m = CT::Mask::cleared(); for(size_t i = delim_idx; i < input_len; ++i) { const auto zero_m = CT::Mask::is_zero(input[i]); const auto one_m = CT::Mask::is_equal(input[i], 1); const auto add_m = waiting_for_delim & zero_m; bad_input_m |= waiting_for_delim & ~(zero_m | one_m); delim_idx += add_m.if_set_return(1); waiting_for_delim &= zero_m; } // If we never saw any non-zero byte, then it's not valid input bad_input_m |= waiting_for_delim; bad_input_m |= CT::Mask::is_zero(ct_compare_u8(&input[hlen], Phash.data(), hlen)); delim_idx += 1; valid_mask = (~bad_input_m).unpoisoned_value(); const secure_vector output = CT::copy_output(bad_input_m, input, input_len, delim_idx); CT::unpoison(input, input_len); return output; } /* * Return the max input size for a given key size */ size_t OAEP::maximum_input_size(size_t keybits) const { if(keybits / 8 > 2*m_Phash.size() + 1) return ((keybits / 8) - 2*m_Phash.size() - 1); else return 0; } /* * OAEP Constructor */ OAEP::OAEP(HashFunction* hash, const std::string& P) : m_mgf1_hash(hash) { m_Phash = m_mgf1_hash->process(P); } OAEP::OAEP(HashFunction* hash, HashFunction* mgf1_hash, const std::string& P) : m_mgf1_hash(mgf1_hash) { std::unique_ptr phash(hash); // takes ownership m_Phash = phash->process(P); } }