/* * EME1 (aka OAEP) * (C) 1999-2010 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include #include namespace Botan { /* * EME1 Pad Operation */ secure_vector EME1::pad(const byte in[], size_t in_length, size_t key_length, RandomNumberGenerator& rng) const { key_length /= 8; if(key_length < in_length + 2*m_Phash.size() + 1) throw Invalid_Argument("EME1: Input is too large"); secure_vector out(key_length); rng.randomize(&out[0], m_Phash.size()); buffer_insert(out, m_Phash.size(), &m_Phash[0], m_Phash.size()); out[out.size() - in_length - 1] = 0x01; buffer_insert(out, out.size() - in_length, in, in_length); mgf1_mask(*m_hash, &out[0], m_Phash.size(), &out[m_Phash.size()], out.size() - m_Phash.size()); mgf1_mask(*m_hash, &out[m_Phash.size()], out.size() - m_Phash.size(), &out[0], m_Phash.size()); return out; } /* * EME1 Unpad Operation */ secure_vector EME1::unpad(const byte in[], size_t in_length, size_t key_length) const { /* Must be careful about error messages here; if an attacker can distinguish them, it is easy to use the differences as an oracle to find the secret key, as described in "A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0", James Manger, Crypto 2001 Also have to be careful about timing attacks! Pointed out by Falko Strenzke. */ key_length /= 8; // Invalid input: truncate to zero length input, causing later // checks to fail if(in_length > key_length) in_length = 0; secure_vector input(key_length); buffer_insert(input, key_length - in_length, in, in_length); mgf1_mask(*m_hash, &input[m_Phash.size()], input.size() - m_Phash.size(), &input[0], m_Phash.size()); mgf1_mask(*m_hash, &input[0], m_Phash.size(), &input[m_Phash.size()], input.size() - m_Phash.size()); bool waiting_for_delim = true; bool bad_input = false; size_t delim_idx = 2 * m_Phash.size(); /* * GCC 4.5 on x86-64 compiles this in a way that is still vunerable * to timing analysis. Other compilers, or GCC on other platforms, * may or may not. */ for(size_t i = delim_idx; i < input.size(); ++i) { const bool zero_p = !input[i]; const bool one_p = input[i] == 0x01; const bool add_1 = waiting_for_delim && zero_p; bad_input |= waiting_for_delim && !(zero_p || one_p); delim_idx += add_1; waiting_for_delim &= zero_p; } // If we never saw any non-zero byte, then it's not valid input bad_input |= waiting_for_delim; bad_input |= !same_mem(&input[m_Phash.size()], &m_Phash[0], m_Phash.size()); if(bad_input) throw Decoding_Error("Invalid EME1 encoding"); return secure_vector(&input[delim_idx + 1], &input[input.size()]); } /* * Return the max input size for a given key size */ size_t EME1::maximum_input_size(size_t keybits) const { if(keybits / 8 > 2*m_Phash.size() + 1) return ((keybits / 8) - 2*m_Phash.size() - 1); else return 0; } /* * EME1 Constructor */ EME1::EME1(HashFunction* hash, const std::string& P) : m_hash(hash) { m_Phash = m_hash->process(P); } }