/* * Cipher Modes * (C) 2013,2016 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #ifndef BOTAN_CIPHER_MODE_H__ #define BOTAN_CIPHER_MODE_H__ #include #include #include #include #include #include namespace Botan { /** * Interface for cipher modes */ class BOTAN_DLL Cipher_Mode { public: virtual ~Cipher_Mode() = default; /* * Prepare for processing a message under the specified nonce */ virtual void start_msg(const uint8_t nonce[], size_t nonce_len) = 0; /** * Begin processing a message. * @param nonce the per message nonce */ template void start(const std::vector& nonce) { start_msg(nonce.data(), nonce.size()); } /** * Begin processing a message. * @param nonce the per message nonce * @param nonce_len length of nonce */ void start(const uint8_t nonce[], size_t nonce_len) { start_msg(nonce, nonce_len); } /** * Begin processing a message. */ void start() { return start_msg(nullptr, 0); } /** * Process message blocks * * Input must be a multiple of update_granularity * * Processes msg in place and returns bytes written. Normally * this will be either msg_len (indicating the entire message was * processed) or for certain AEAD modes zero (indicating that the * mode requires the entire message be processed in one pass). * * @param msg the message to be processed * @param msg_len length of the message in bytes */ virtual size_t process(uint8_t msg[], size_t msg_len) = 0; /** * Process some data. Input must be in size update_granularity() uint8_t blocks. * @param buffer in/out parameter which will possibly be resized * @param offset an offset into blocks to begin processing */ void update(secure_vector& buffer, size_t offset = 0) { BOTAN_ASSERT(buffer.size() >= offset, "Offset ok"); uint8_t* buf = buffer.data() + offset; const size_t buf_size = buffer.size() - offset; const size_t written = process(buf, buf_size); buffer.resize(offset + written); } /** * Complete processing of a message. * * @param final_block in/out parameter which must be at least * minimum_final_size() bytes, and will be set to any final output * @param offset an offset into final_block to begin processing */ virtual void finish(secure_vector& final_block, size_t offset = 0) = 0; /** * Returns the size of the output if this transform is used to process a * message with input_length bytes. Will throw if unable to give a precise * answer. */ virtual size_t output_length(size_t input_length) const = 0; /** * @return size of required blocks to update */ virtual size_t update_granularity() const = 0; /** * @return required minimium size to finalize() - may be any * length larger than this. */ virtual size_t minimum_final_size() const = 0; /** * @return the default size for a nonce */ virtual size_t default_nonce_length() const = 0; /** * @return true iff nonce_len is a valid length for the nonce */ virtual bool valid_nonce_length(size_t nonce_len) const = 0; virtual std::string name() const = 0; /** * Zeroise all state * See also reset_msg() */ virtual void clear() = 0; /** * Resets just the message specific state and allows encrypting again under the existing key */ virtual void reset() = 0; /** * @return true iff this mode provides authentication as well as * confidentiality. */ virtual bool authenticated() const { return false; } /** * @return the size of the authentication tag used (in bytes) */ virtual size_t tag_size() const { return 0; } /** * @return object describing limits on key size */ virtual Key_Length_Specification key_spec() const = 0; /** * Check whether a given key length is valid for this algorithm. * @param length the key length to be checked. * @return true if the key length is valid. */ bool valid_keylength(size_t length) const { return key_spec().valid_keylength(length); } /** * Set the symmetric key of this transform * @param key contains the key material */ template void set_key(const std::vector& key) { set_key(key.data(), key.size()); } /** * Set the symmetric key of this transform * @param key contains the key material */ void set_key(const SymmetricKey& key) { set_key(key.begin(), key.length()); } /** * Set the symmetric key of this transform * @param key contains the key material * @param length in bytes of key param */ void set_key(const uint8_t key[], size_t length) { if(!valid_keylength(length)) throw Invalid_Key_Length(name(), length); key_schedule(key, length); } /** * @return provider information about this implementation. Default is "base", * might also return "sse2", "avx2", "openssl", or some other arbitrary string. */ virtual std::string provider() const { return "base"; } private: virtual void key_schedule(const uint8_t key[], size_t length) = 0; }; /** * The two possible directions for cipher filters, determining whether they * actually perform encryption or decryption. */ enum Cipher_Dir { ENCRYPTION, DECRYPTION }; /** * Get a cipher mode by name (eg "AES-128/CBC" or "Serpent/XTS") * @param algo_spec cipher name * @param direction ENCRYPTION or DECRYPTION */ BOTAN_DLL Cipher_Mode* get_cipher_mode(const std::string& algo_spec, Cipher_Dir direction); } #endif