/* * CFB Mode * (C) 1999-2007,2013 Jack Lloyd * (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include namespace Botan { CFB_Mode::CFB_Mode(BlockCipher* cipher, size_t feedback_bits) : m_cipher(cipher), m_feedback_bytes(feedback_bits ? feedback_bits / 8 : cipher->block_size()) { if(feedback_bits % 8 || feedback() > cipher->block_size()) throw Invalid_Argument(name() + ": feedback bits " + std::to_string(feedback_bits) + " not supported"); } void CFB_Mode::clear() { m_cipher->clear(); reset(); } void CFB_Mode::reset() { m_shift_register.clear(); m_keystream_buf.clear(); } std::string CFB_Mode::name() const { if(feedback() == cipher().block_size()) return cipher().name() + "/CFB"; else return cipher().name() + "/CFB(" + std::to_string(feedback()*8) + ")"; } size_t CFB_Mode::output_length(size_t input_length) const { return input_length; } size_t CFB_Mode::update_granularity() const { return feedback(); } size_t CFB_Mode::minimum_final_size() const { return 0; } Key_Length_Specification CFB_Mode::key_spec() const { return cipher().key_spec(); } size_t CFB_Mode::default_nonce_length() const { return cipher().block_size(); } bool CFB_Mode::valid_nonce_length(size_t n) const { return (n == 0 || n == cipher().block_size()); } void CFB_Mode::key_schedule(const uint8_t key[], size_t length) { m_cipher->set_key(key, length); } void CFB_Mode::start_msg(const uint8_t nonce[], size_t nonce_len) { if(!valid_nonce_length(nonce_len)) throw Invalid_IV_Length(name(), nonce_len); if(nonce_len == 0) { if(m_shift_register.empty()) { throw Invalid_State("CFB requires a non-empty initial nonce"); } } else { m_shift_register.assign(nonce, nonce + nonce_len); } m_keystream_buf.resize(m_shift_register.size()); cipher().encrypt(m_shift_register, m_keystream_buf); } size_t CFB_Encryption::process(uint8_t buf[], size_t sz) { const size_t BS = cipher().block_size(); secure_vector& state = shift_register(); const size_t shift = feedback(); size_t left = sz; while(left) { const size_t took = std::min(shift, left); xor_buf(buf, &keystream_buf()[0], took); // Assumes feedback-sized block except for last input if (BS - shift > 0) { copy_mem(state.data(), &state[shift], BS - shift); } copy_mem(&state[BS-shift], buf, took); cipher().encrypt(state, keystream_buf()); buf += took; left -= took; } return sz; } void CFB_Encryption::finish(secure_vector& buffer, size_t offset) { update(buffer, offset); } size_t CFB_Decryption::process(uint8_t buf[], size_t sz) { const size_t BS = cipher().block_size(); secure_vector& state = shift_register(); const size_t shift = feedback(); size_t left = sz; while(left) { const size_t took = std::min(shift, left); // first update shift register with ciphertext if (BS - shift > 0) { copy_mem(state.data(), &state[shift], BS - shift); } copy_mem(&state[BS-shift], buf, took); // then decrypt xor_buf(buf, &keystream_buf()[0], took); // then update keystream cipher().encrypt(state, keystream_buf()); buf += took; left -= took; } return sz; } void CFB_Decryption::finish(secure_vector& buffer, size_t offset) { update(buffer, offset); } }