/* * CBC Mode * (C) 1999-2007,2013 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { template Transform* make_cbc_mode(const Transform::Spec& spec) { Algorithm_Factory& af = global_state().algorithm_factory(); const BlockCipher* bc = af.prototype_block_cipher(spec.arg(0)); if(bc) { const std::string padding = spec.arg(1, "PKCS7"); if(padding == "CTS") return new CTS_T(bc->clone()); else return new CBC_T(bc->clone(), get_bc_pad(padding)); } return nullptr; } BOTAN_REGISTER_TRANSFORM(CBC_Encryption, (make_cbc_mode)); BOTAN_REGISTER_TRANSFORM(CBC_Decryption, (make_cbc_mode)); CBC_Mode::CBC_Mode(BlockCipher* cipher, BlockCipherModePaddingMethod* padding) : m_cipher(cipher), m_padding(padding), m_state(m_cipher->block_size()) { if(m_padding && !m_padding->valid_blocksize(cipher->block_size())) throw std::invalid_argument("Padding " + m_padding->name() + " cannot be used with " + cipher->name() + "/CBC"); } void CBC_Mode::clear() { m_cipher->clear(); m_state.clear(); } std::string CBC_Mode::name() const { if(m_padding) return cipher().name() + "/CBC/" + padding().name(); else return cipher().name() + "/CBC/CTS"; } size_t CBC_Mode::update_granularity() const { return cipher().parallel_bytes(); } Key_Length_Specification CBC_Mode::key_spec() const { return cipher().key_spec(); } size_t CBC_Mode::default_nonce_length() const { return cipher().block_size(); } bool CBC_Mode::valid_nonce_length(size_t n) const { return (n == 0 || n == cipher().block_size()); } void CBC_Mode::key_schedule(const byte key[], size_t length) { m_cipher->set_key(key, length); } secure_vector CBC_Mode::start_raw(const byte nonce[], size_t nonce_len) { if(!valid_nonce_length(nonce_len)) throw Invalid_IV_Length(name(), nonce_len); /* * A nonce of zero length means carry the last ciphertext value over * as the new IV, as unfortunately some protocols require this. If * this is the first message then we use an IV of all zeros. */ if(nonce_len) m_state.assign(nonce, nonce + nonce_len); return secure_vector(); } size_t CBC_Encryption::minimum_final_size() const { return 0; } size_t CBC_Encryption::output_length(size_t input_length) const { return round_up(input_length, cipher().block_size()); } void CBC_Encryption::update(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); const size_t sz = buffer.size() - offset; byte* buf = &buffer[offset]; const size_t BS = cipher().block_size(); BOTAN_ASSERT(sz % BS == 0, "CBC input is full blocks"); const size_t blocks = sz / BS; const byte* prev_block = state_ptr(); if(blocks) { for(size_t i = 0; i != blocks; ++i) { xor_buf(&buf[BS*i], prev_block, BS); cipher().encrypt(&buf[BS*i]); prev_block = &buf[BS*i]; } state().assign(&buf[BS*(blocks-1)], &buf[BS*blocks]); } } void CBC_Encryption::finish(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); const size_t BS = cipher().block_size(); const size_t bytes_in_final_block = (buffer.size()-offset) % BS; padding().add_padding(buffer, bytes_in_final_block, BS); if((buffer.size()-offset) % BS) throw std::runtime_error("Did not pad to full block size in " + name()); update(buffer, offset); } bool CTS_Encryption::valid_nonce_length(size_t n) const { return (n == cipher().block_size()); } size_t CTS_Encryption::minimum_final_size() const { return cipher().block_size() + 1; } size_t CTS_Encryption::output_length(size_t input_length) const { return input_length; // no ciphertext expansion in CTS } void CTS_Encryption::finish(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); byte* buf = &buffer[offset]; const size_t sz = buffer.size() - offset; const size_t BS = cipher().block_size(); if(sz < BS + 1) throw Encoding_Error(name() + ": insufficient data to encrypt"); if(sz % BS == 0) { update(buffer, offset); // swap last two blocks for(size_t i = 0; i != BS; ++i) std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]); } else { const size_t full_blocks = ((sz / BS) - 1) * BS; const size_t final_bytes = sz - full_blocks; BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range"); secure_vector last(buf + full_blocks, buf + full_blocks + final_bytes); buffer.resize(full_blocks + offset); update(buffer, offset); xor_buf(&last[0], state_ptr(), BS); cipher().encrypt(&last[0]); for(size_t i = 0; i != final_bytes - BS; ++i) { last[i] ^= last[i + BS]; last[i + BS] ^= last[i]; } cipher().encrypt(&last[0]); buffer += last; } } size_t CBC_Decryption::output_length(size_t input_length) const { return input_length; // precise for CTS, worst case otherwise } size_t CBC_Decryption::minimum_final_size() const { return cipher().block_size(); } void CBC_Decryption::update(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); const size_t sz = buffer.size() - offset; byte* buf = &buffer[offset]; const size_t BS = cipher().block_size(); BOTAN_ASSERT(sz % BS == 0, "Input is full blocks"); size_t blocks = sz / BS; while(blocks) { const size_t to_proc = std::min(BS * blocks, m_tempbuf.size()); cipher().decrypt_n(buf, &m_tempbuf[0], to_proc / BS); xor_buf(&m_tempbuf[0], state_ptr(), BS); xor_buf(&m_tempbuf[BS], buf, to_proc - BS); copy_mem(state_ptr(), buf + (to_proc - BS), BS); copy_mem(buf, &m_tempbuf[0], to_proc); buf += to_proc; blocks -= to_proc / BS; } } void CBC_Decryption::finish(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); const size_t sz = buffer.size() - offset; const size_t BS = cipher().block_size(); if(sz == 0 || sz % BS) throw Decoding_Error(name() + ": Ciphertext not a multiple of block size"); update(buffer, offset); const size_t pad_bytes = BS - padding().unpad(&buffer[buffer.size()-BS], BS); buffer.resize(buffer.size() - pad_bytes); // remove padding } bool CTS_Decryption::valid_nonce_length(size_t n) const { return (n == cipher().block_size()); } size_t CTS_Decryption::minimum_final_size() const { return cipher().block_size() + 1; } void CTS_Decryption::finish(secure_vector& buffer, size_t offset) { BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane"); const size_t sz = buffer.size() - offset; byte* buf = &buffer[offset]; const size_t BS = cipher().block_size(); if(sz < BS + 1) throw Encoding_Error(name() + ": insufficient data to decrypt"); if(sz % BS == 0) { // swap last two blocks for(size_t i = 0; i != BS; ++i) std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]); update(buffer, offset); } else { const size_t full_blocks = ((sz / BS) - 1) * BS; const size_t final_bytes = sz - full_blocks; BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range"); secure_vector last(buf + full_blocks, buf + full_blocks + final_bytes); buffer.resize(full_blocks + offset); update(buffer, offset); cipher().decrypt(&last[0]); xor_buf(&last[0], &last[BS], final_bytes - BS); for(size_t i = 0; i != final_bytes - BS; ++i) std::swap(last[i], last[i + BS]); cipher().decrypt(&last[0]); xor_buf(&last[0], state_ptr(), BS); buffer += last; } } }