/* * CLMUL hook * (C) 2013,2017 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { namespace { BOTAN_FUNC_ISA("sse2") inline __m128i gcm_reduce(const __m128i& B0, const __m128i& B1) { __m128i T0, T1, T2, T3; T0 = _mm_srli_epi32(B1, 31); T1 = _mm_slli_epi32(B1, 1); T2 = _mm_srli_epi32(B0, 31); T3 = _mm_slli_epi32(B0, 1); T3 = _mm_or_si128(T3, _mm_srli_si128(T0, 12)); T3 = _mm_or_si128(T3, _mm_slli_si128(T2, 4)); T1 = _mm_or_si128(T1, _mm_slli_si128(T0, 4)); T0 = _mm_xor_si128(_mm_slli_epi32(T1, 31), _mm_slli_epi32(T1, 30)); T0 = _mm_xor_si128(T0, _mm_slli_epi32(T1, 25)); T1 = _mm_xor_si128(T1, _mm_slli_si128(T0, 12)); T0 = _mm_xor_si128(T3, _mm_srli_si128(T0, 4)); T0 = _mm_xor_si128(T0, T1); T0 = _mm_xor_si128(T0, _mm_srli_epi32(T1, 7)); T0 = _mm_xor_si128(T0, _mm_srli_epi32(T1, 1)); T0 = _mm_xor_si128(T0, _mm_srli_epi32(T1, 2)); return T0; } BOTAN_FUNC_ISA("pclmul,sse2") inline __m128i gcm_multiply(const __m128i& H, const __m128i& x) { __m128i T0, T1, T2, T3; T0 = _mm_clmulepi64_si128(x, H, 0x11); T1 = _mm_clmulepi64_si128(x, H, 0x10); T2 = _mm_clmulepi64_si128(x, H, 0x01); T3 = _mm_clmulepi64_si128(x, H, 0x00); T1 = _mm_xor_si128(T1, T2); T0 = _mm_xor_si128(T0, _mm_srli_si128(T1, 8)); T3 = _mm_xor_si128(T3, _mm_slli_si128(T1, 8)); return gcm_reduce(T0, T3); } BOTAN_FUNC_ISA("pclmul,sse2") inline __m128i gcm_multiply_x4(const __m128i& H1, const __m128i& H2, const __m128i& H3, const __m128i& H4, const __m128i& X1, const __m128i& X2, const __m128i& X3, const __m128i& X4) { /* * Mutiply with delayed reduction, algorithm by Krzysztof Jankowski * and Pierre Laurent of Intel */ const __m128i H1_X1_lo = _mm_clmulepi64_si128(H1, X1, 0x00); const __m128i H2_X2_lo = _mm_clmulepi64_si128(H2, X2, 0x00); const __m128i H3_X3_lo = _mm_clmulepi64_si128(H3, X3, 0x00); const __m128i H4_X4_lo = _mm_clmulepi64_si128(H4, X4, 0x00); const __m128i lo = _mm_xor_si128( _mm_xor_si128(H1_X1_lo, H2_X2_lo), _mm_xor_si128(H3_X3_lo, H4_X4_lo)); const __m128i H1_X1_hi = _mm_clmulepi64_si128(H1, X1, 0x11); const __m128i H2_X2_hi = _mm_clmulepi64_si128(H2, X2, 0x11); const __m128i H3_X3_hi = _mm_clmulepi64_si128(H3, X3, 0x11); const __m128i H4_X4_hi = _mm_clmulepi64_si128(H4, X4, 0x11); const __m128i hi = _mm_xor_si128( _mm_xor_si128(H1_X1_hi, H2_X2_hi), _mm_xor_si128(H3_X3_hi, H4_X4_hi)); __m128i T0 = _mm_xor_si128(lo, hi); __m128i T1, T2, T3, T4; T1 = _mm_xor_si128(_mm_srli_si128(H1, 8), H1); T2 = _mm_xor_si128(_mm_srli_si128(X1, 8), X1); T3 = _mm_xor_si128(_mm_srli_si128(H2, 8), H2); T4 = _mm_xor_si128(_mm_srli_si128(X2, 8), X2); T0 = _mm_xor_si128(T0, _mm_clmulepi64_si128(T1, T2, 0x00)); T0 = _mm_xor_si128(T0, _mm_clmulepi64_si128(T3, T4, 0x00)); T1 = _mm_xor_si128(_mm_srli_si128(H3, 8), H3); T2 = _mm_xor_si128(_mm_srli_si128(X3, 8), X3); T3 = _mm_xor_si128(_mm_srli_si128(H4, 8), H4); T4 = _mm_xor_si128(_mm_srli_si128(X4, 8), X4); T0 = _mm_xor_si128(T0, _mm_clmulepi64_si128(T1, T2, 0x00)); T0 = _mm_xor_si128(T0, _mm_clmulepi64_si128(T3, T4, 0x00)); T1 = _mm_xor_si128(_mm_srli_si128(T0, 8), hi); T2 = _mm_xor_si128(_mm_slli_si128(T0, 8), lo); return gcm_reduce(T1, T2); } } BOTAN_FUNC_ISA("ssse3") void gcm_clmul_precompute(const uint8_t H_bytes[16], uint64_t H_pow[4*2]) { const __m128i BSWAP_MASK = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i H = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast(H_bytes)), BSWAP_MASK); const __m128i H2 = gcm_multiply(H, H); const __m128i H3 = gcm_multiply(H, H2); const __m128i H4 = gcm_multiply(H, H3); __m128i* H_pow_mm = reinterpret_cast<__m128i*>(H_pow); _mm_storeu_si128(H_pow_mm+0, H); _mm_storeu_si128(H_pow_mm+1, H2); _mm_storeu_si128(H_pow_mm+2, H3); _mm_storeu_si128(H_pow_mm+3, H4); } BOTAN_FUNC_ISA("ssse3") void gcm_multiply_clmul(uint8_t x[16], const uint64_t H_pow[8], const uint8_t input_bytes[], size_t blocks) { /* * Algorithms 1 and 5 from Intel's CLMUL guide */ const __m128i BSWAP_MASK = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i* input = reinterpret_cast(input_bytes); const __m128i* H_pow_mm = reinterpret_cast(H_pow); const __m128i H = _mm_loadu_si128(H_pow_mm); __m128i a = _mm_loadu_si128(reinterpret_cast(x)); a = _mm_shuffle_epi8(a, BSWAP_MASK); if(blocks >= 4) { const __m128i H2 = _mm_loadu_si128(H_pow_mm + 1); const __m128i H3 = _mm_loadu_si128(H_pow_mm + 2); const __m128i H4 = _mm_loadu_si128(H_pow_mm + 3); while(blocks >= 4) { const __m128i m0 = _mm_shuffle_epi8(_mm_loadu_si128(input + 0), BSWAP_MASK); const __m128i m1 = _mm_shuffle_epi8(_mm_loadu_si128(input + 1), BSWAP_MASK); const __m128i m2 = _mm_shuffle_epi8(_mm_loadu_si128(input + 2), BSWAP_MASK); const __m128i m3 = _mm_shuffle_epi8(_mm_loadu_si128(input + 3), BSWAP_MASK); a = _mm_xor_si128(a, m0); a = gcm_multiply_x4(H, H2, H3, H4, m3, m2, m1, a); input += 4; blocks -= 4; } } for(size_t i = 0; i != blocks; ++i) { const __m128i m = _mm_shuffle_epi8(_mm_loadu_si128(input + i), BSWAP_MASK); a = _mm_xor_si128(a, m); a = gcm_multiply(H, a); } a = _mm_shuffle_epi8(a, BSWAP_MASK); _mm_storeu_si128(reinterpret_cast<__m128i*>(x), a); } }