/* * Montgomery Exponentiation * (C) 1999-2010,2012 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { /* * Set the exponent */ void Montgomery_Exponentiator::set_exponent(const BigInt& exp) { m_exp = exp; m_exp_bits = exp.bits(); } /* * Set the base */ void Montgomery_Exponentiator::set_base(const BigInt& base) { m_window_bits = Power_Mod::window_bits(m_exp.bits(), base.bits(), m_hints); m_g.resize((1 << m_window_bits)); BigInt z(BigInt::Positive, 2 * (m_mod_words + 1)); secure_vector workspace(z.size()); m_g[0] = 1; bigint_monty_mul(z.mutable_data(), z.size(), m_g[0].data(), m_g[0].size(), m_g[0].sig_words(), m_R2_mod.data(), m_R2_mod.size(), m_R2_mod.sig_words(), m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); m_g[0] = z; m_g[1] = (base >= m_modulus) ? (base % m_modulus) : base; bigint_monty_mul(z.mutable_data(), z.size(), m_g[1].data(), m_g[1].size(), m_g[1].sig_words(), m_R2_mod.data(), m_R2_mod.size(), m_R2_mod.sig_words(), m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); m_g[1] = z; const BigInt& x = m_g[1]; const size_t x_sig = x.sig_words(); for(size_t i = 2; i != m_g.size(); ++i) { const BigInt& y = m_g[i-1]; const size_t y_sig = y.sig_words(); bigint_monty_mul(z.mutable_data(), z.size(), x.data(), x.size(), x_sig, y.data(), y.size(), y_sig, m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); m_g[i] = z; } } /* * Compute the result */ BigInt Montgomery_Exponentiator::execute() const { const size_t exp_nibbles = (m_exp_bits + m_window_bits - 1) / m_window_bits; BigInt x = m_R_mod; const size_t z_size = 2*(m_mod_words + 1); BigInt z(BigInt::Positive, z_size); secure_vector workspace(z_size); for(size_t i = exp_nibbles; i > 0; --i) { for(size_t k = 0; k != m_window_bits; ++k) { bigint_monty_sqr(z.mutable_data(), z_size, x.data(), x.size(), x.sig_words(), m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); x = z; } const u32bit nibble = m_exp.get_substring(m_window_bits*(i-1), m_window_bits); const BigInt& y = m_g[nibble]; bigint_monty_mul(z.mutable_data(), z_size, x.data(), x.size(), x.sig_words(), y.data(), y.size(), y.sig_words(), m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); x = z; } x.grow_to(2*m_mod_words + 1); bigint_monty_redc(x.mutable_data(), m_modulus.data(), m_mod_words, m_mod_prime, &workspace[0]); return x; } /* * Montgomery_Exponentiator Constructor */ Montgomery_Exponentiator::Montgomery_Exponentiator(const BigInt& mod, Power_Mod::Usage_Hints hints) : m_modulus(mod), m_mod_words(m_modulus.sig_words()), m_window_bits(1), m_hints(hints) { // Montgomery reduction only works for positive odd moduli if(!m_modulus.is_positive() || m_modulus.is_even()) throw Invalid_Argument("Montgomery_Exponentiator: invalid modulus"); m_mod_prime = monty_inverse(mod.word_at(0)); const BigInt r = BigInt::power_of_2(m_mod_words * BOTAN_MP_WORD_BITS); m_R_mod = r % m_modulus; m_R2_mod = (m_R_mod * m_R_mod) % m_modulus; } }