/* * Prime Generation * (C) 1999-2007 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { /* * Generate a random prime */ BigInt random_prime(RandomNumberGenerator& rng, size_t bits, const BigInt& coprime, size_t equiv, size_t modulo) { if(coprime <= 0) { throw Invalid_Argument("random_prime: coprime must be > 0"); } if(modulo % 2 == 1 || modulo == 0) { throw Invalid_Argument("random_prime: Invalid modulo value"); } if(equiv >= modulo || equiv % 2 == 0) { throw Invalid_Argument("random_prime: equiv must be < modulo, and odd"); } // Handle small values: if(bits <= 1) { throw Invalid_Argument("random_prime: Can't make a prime of " + std::to_string(bits) + " bits"); } else if(bits == 2) { return ((rng.next_byte() % 2) ? 2 : 3); } else if(bits == 3) { return ((rng.next_byte() % 2) ? 5 : 7); } else if(bits == 4) { return ((rng.next_byte() % 2) ? 11 : 13); } while(true) { BigInt p(rng, bits); // Force lowest and two top bits on p.set_bit(bits - 1); p.set_bit(bits - 2); p.set_bit(0); if(p % modulo != equiv) p += (modulo - p % modulo) + equiv; const size_t sieve_size = std::min(bits / 2, PRIME_TABLE_SIZE); secure_vector sieve(sieve_size); for(size_t j = 0; j != sieve.size(); ++j) sieve[j] = static_cast(p % PRIMES[j]); size_t counter = 0; while(true) { ++counter; if(counter >= 4096) { break; // don't try forever, choose a new starting point } p += modulo; if(p.bits() > bits) break; bool passes_sieve = true; for(size_t j = 0; j != sieve.size(); ++j) { sieve[j] = (sieve[j] + modulo) % PRIMES[j]; if(sieve[j] == 0) { passes_sieve = false; break; } } if(!passes_sieve) continue; if(gcd(p - 1, coprime) != 1) continue; if(is_prime(p, rng, 128, true)) { return p; } } } } /* * Generate a random safe prime */ BigInt random_safe_prime(RandomNumberGenerator& rng, size_t bits) { if(bits <= 64) throw Invalid_Argument("random_safe_prime: Can't make a prime of " + std::to_string(bits) + " bits"); BigInt p; do p = (random_prime(rng, bits - 1) << 1) + 1; while(!is_prime(p, rng, 128, true)); return p; } }