/* * Prime Generation * (C) 1999-2007,2018 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include namespace Botan { namespace { class Prime_Sieve final { public: Prime_Sieve(const BigInt& init_value, size_t sieve_size) : m_sieve(std::min(sieve_size, PRIME_TABLE_SIZE)) { for(size_t i = 0; i != m_sieve.size(); ++i) m_sieve[i] = static_cast(init_value % PRIMES[i]); } void step(word increment) { for(size_t i = 0; i != m_sieve.size(); ++i) { m_sieve[i] = (m_sieve[i] + increment) % PRIMES[i]; } } bool passes(bool check_2p1 = false) const { for(size_t i = 0; i != m_sieve.size(); ++i) { /* In this case, p is a multiple of PRIMES[i] */ if(m_sieve[i] == 0) return false; if(check_2p1) { /* In this case, 2*p+1 will be a multiple of PRIMES[i] So if potentially generating a safe prime, we want to avoid this value because 2*p+1 will certainly not be prime. See "Safe Prime Generation with a Combined Sieve" M. Wiener https://eprint.iacr.org/2003/186.pdf */ if(m_sieve[i] == (PRIMES[i] - 1) / 2) return false; } } return true; } private: std::vector m_sieve; }; } /* * Generate a random prime */ BigInt random_prime(RandomNumberGenerator& rng, size_t bits, const BigInt& coprime, size_t equiv, size_t modulo, size_t prob) { if(coprime.is_negative()) { throw Invalid_Argument("random_prime: coprime must be >= 0"); } if(modulo == 0) { throw Invalid_Argument("random_prime: Invalid modulo value"); } equiv %= modulo; if(equiv == 0) throw Invalid_Argument("random_prime Invalid value for equiv/modulo"); // Handle small values: if(bits <= 1) { throw Invalid_Argument("random_prime: Can't make a prime of " + std::to_string(bits) + " bits"); } else if(bits == 2) { return ((rng.next_byte() % 2) ? 2 : 3); } else if(bits == 3) { return ((rng.next_byte() % 2) ? 5 : 7); } else if(bits == 4) { return ((rng.next_byte() % 2) ? 11 : 13); } else if(bits <= 16) { for(;;) { // This is slightly biased, but for small primes it does not seem to matter const uint8_t b0 = rng.next_byte(); const uint8_t b1 = rng.next_byte(); const size_t idx = make_uint16(b0, b1) % PRIME_TABLE_SIZE; const uint16_t small_prime = PRIMES[idx]; if(high_bit(small_prime) == bits) return small_prime; } } const size_t MAX_ATTEMPTS = 32*1024; while(true) { BigInt p(rng, bits); // Force lowest and two top bits on p.set_bit(bits - 1); p.set_bit(bits - 2); p.set_bit(0); // Force p to be equal to equiv mod modulo p += (modulo - (p % modulo)) + equiv; Prime_Sieve sieve(p, bits); size_t counter = 0; while(true) { ++counter; if(counter > MAX_ATTEMPTS) { break; // don't try forever, choose a new starting point } p += modulo; sieve.step(modulo); if(sieve.passes(true) == false) continue; if(coprime > 1) { /* * Check if gcd(p - 1, coprime) != 1 by computing the inverse. The * gcd algorithm is not constant time, but modular inverse is (for * odd modulus anyway). This avoids a side channel attack against RSA * key generation, though RSA keygen should be using generate_rsa_prime. */ if(inverse_mod(p - 1, coprime).is_zero()) continue; } if(p.bits() > bits) break; if(is_prime(p, rng, prob, true)) return p; } } } BigInt generate_rsa_prime(RandomNumberGenerator& keygen_rng, RandomNumberGenerator& prime_test_rng, size_t bits, const BigInt& coprime, size_t prob) { if(bits < 512) throw Invalid_Argument("generate_rsa_prime bits too small"); /* * The restriction on coprime <= 64 bits is arbitrary but generally speaking * very large RSA public exponents are a bad idea both for performance and due * to attacks on small d. */ if(coprime <= 1 || coprime.is_even() || coprime.bits() > 64) throw Invalid_Argument("generate_rsa_prime coprime must be small odd positive integer"); const size_t MAX_ATTEMPTS = 32*1024; while(true) { BigInt p(keygen_rng, bits); // Force lowest and two top bits on p.set_bit(bits - 1); p.set_bit(bits - 2); p.set_bit(0); Prime_Sieve sieve(p, bits); const word step = 2; size_t counter = 0; while(true) { ++counter; if(counter > MAX_ATTEMPTS) { break; // don't try forever, choose a new starting point } p += step; sieve.step(step); if(sieve.passes() == false) continue; /* * Check if p - 1 and coprime are relatively prime by computing the inverse. * * We avoid gcd here because that algorithm is not constant time. * Modular inverse is (for odd modulus anyway). * * We earlier verified that coprime argument is odd. Thus the factors of 2 * in (p - 1) cannot possibly be factors in coprime, so remove them from p - 1. * Using an odd modulus allows the const time algorithm to be used. * * This assumes coprime < p - 1 which is always true for RSA. */ BigInt p1 = p - 1; p1 >>= low_zero_bits(p1); if(inverse_mod(coprime, p1).is_zero()) { BOTAN_DEBUG_ASSERT(gcd(p1, coprime) > 1); continue; } BOTAN_DEBUG_ASSERT(gcd(p1, coprime) == 1); if(p.bits() > bits) break; if(is_prime(p, prime_test_rng, prob, true)) return p; } } } /* * Generate a random safe prime */ BigInt random_safe_prime(RandomNumberGenerator& rng, size_t bits) { if(bits <= 64) throw Invalid_Argument("random_safe_prime: Can't make a prime of " + std::to_string(bits) + " bits"); BigInt q, p; for(;;) { /* Generate q == 2 (mod 3) Otherwise [q == 1 (mod 3) case], 2*q+1 == 3 (mod 3) and not prime. Initially allow a very high error prob (1/2**8) to allow for fast checks, then if 2*q+1 turns out to be a prime go back and strongly check q. */ q = random_prime(rng, bits - 1, 0, 2, 3, 8); p = (q << 1) + 1; if(is_prime(p, rng, 128, true)) { // We did only a weak check before, go back and verify q before returning if(is_prime(q, rng, 128, true)) return p; } } } }