/* * Multiplication and Squaring * (C) 1999-2010 Jack Lloyd * 2016 Matthias Gierlings * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { namespace { const size_t KARATSUBA_MULTIPLY_THRESHOLD = 32; const size_t KARATSUBA_SQUARE_THRESHOLD = 32; /* * Simple O(N^2) Multiplication */ void basecase_mul(word z[], const word x[], size_t x_size, const word y[], size_t y_size) { const size_t x_size_8 = x_size - (x_size % 8); clear_mem(z, x_size + y_size); for(size_t i = 0; i != y_size; ++i) { const word y_i = y[i]; word carry = 0; for(size_t j = 0; j != x_size_8; j += 8) carry = word8_madd3(z + i + j, x + j, y_i, carry); for(size_t j = x_size_8; j != x_size; ++j) z[i+j] = word_madd3(x[j], y_i, z[i+j], &carry); z[x_size+i] = carry; } } /* * Karatsuba Multiplication Operation */ void karatsuba_mul(word z[], const word x[], const word y[], size_t N, word workspace[]) { if(N < KARATSUBA_MULTIPLY_THRESHOLD || N % 2) { if(N == 6) return bigint_comba_mul6(z, x, y); else if(N == 8) return bigint_comba_mul8(z, x, y); else if(N == 16) return bigint_comba_mul16(z, x, y); else return basecase_mul(z, x, N, y, N); } const size_t N2 = N / 2; const word* x0 = x; const word* x1 = x + N2; const word* y0 = y; const word* y1 = y + N2; word* z0 = z; word* z1 = z + N; const int32_t cmp0 = bigint_cmp(x0, N2, x1, N2); const int32_t cmp1 = bigint_cmp(y1, N2, y0, N2); clear_mem(workspace, 2*N); /* * If either of cmp0 or cmp1 is zero then z0 or z1 resp is zero here, * resulting in a no-op - z0*z1 will be equal to zero so we don't need to do * anything, clear_mem above already set the correct result. * * However we ignore the result of the comparisons and always perform the * subtractions and recursively multiply to avoid the timing channel. */ //if(cmp0 && cmp1) { if(cmp0 > 0) bigint_sub3(z0, x0, N2, x1, N2); else bigint_sub3(z0, x1, N2, x0, N2); if(cmp1 > 0) bigint_sub3(z1, y1, N2, y0, N2); else bigint_sub3(z1, y0, N2, y1, N2); karatsuba_mul(workspace, z0, z1, N2, workspace+N); } karatsuba_mul(z0, x0, y0, N2, workspace+N); karatsuba_mul(z1, x1, y1, N2, workspace+N); const word ws_carry = bigint_add3_nc(workspace + N, z0, N, z1, N); word z_carry = bigint_add2_nc(z + N2, N, workspace + N, N); z_carry += bigint_add2_nc(z + N + N2, N2, &ws_carry, 1); bigint_add2_nc(z + N + N2, N2, &z_carry, 1); if((cmp0 == cmp1) || (cmp0 == 0) || (cmp1 == 0)) bigint_add2(z + N2, 2*N-N2, workspace, N); else bigint_sub2(z + N2, 2*N-N2, workspace, N); } /* * Karatsuba Squaring Operation */ void karatsuba_sqr(word z[], const word x[], size_t N, word workspace[]) { if(N < KARATSUBA_SQUARE_THRESHOLD || N % 2) { if(N == 6) return bigint_comba_sqr6(z, x); else if(N == 8) return bigint_comba_sqr8(z, x); else if(N == 16) return bigint_comba_sqr16(z, x); else return basecase_mul(z, x, N, x, N); } const size_t N2 = N / 2; const word* x0 = x; const word* x1 = x + N2; word* z0 = z; word* z1 = z + N; const int32_t cmp = bigint_cmp(x0, N2, x1, N2); clear_mem(workspace, 2*N); // See comment in karatsuba_mul //if(cmp) { if(cmp > 0) bigint_sub3(z0, x0, N2, x1, N2); else bigint_sub3(z0, x1, N2, x0, N2); karatsuba_sqr(workspace, z0, N2, workspace+N); } karatsuba_sqr(z0, x0, N2, workspace+N); karatsuba_sqr(z1, x1, N2, workspace+N); const word ws_carry = bigint_add3_nc(workspace + N, z0, N, z1, N); word z_carry = bigint_add2_nc(z + N2, N, workspace + N, N); z_carry += bigint_add2_nc(z + N + N2, N2, &ws_carry, 1); bigint_add2_nc(z + N + N2, N2, &z_carry, 1); /* * This is only actually required if cmp is != 0, however * if cmp==0 then workspace[0:N] == 0 and avoiding the jump * hides a timing channel. */ bigint_sub2(z + N2, 2*N-N2, workspace, N); } /* * Pick a good size for the Karatsuba multiply */ size_t karatsuba_size(size_t z_size, size_t x_size, size_t x_sw, size_t y_size, size_t y_sw) { if(x_sw > x_size || x_sw > y_size || y_sw > x_size || y_sw > y_size) return 0; if(((x_size == x_sw) && (x_size % 2)) || ((y_size == y_sw) && (y_size % 2))) return 0; const size_t start = (x_sw > y_sw) ? x_sw : y_sw; const size_t end = (x_size < y_size) ? x_size : y_size; if(start == end) { if(start % 2) return 0; return start; } for(size_t j = start; j <= end; ++j) { if(j % 2) continue; if(2*j > z_size) return 0; if(x_sw <= j && j <= x_size && y_sw <= j && j <= y_size) { if(j % 4 == 2 && (j+2) <= x_size && (j+2) <= y_size && 2*(j+2) <= z_size) return j+2; return j; } } return 0; } /* * Pick a good size for the Karatsuba squaring */ size_t karatsuba_size(size_t z_size, size_t x_size, size_t x_sw) { if(x_sw == x_size) { if(x_sw % 2) return 0; return x_sw; } for(size_t j = x_sw; j <= x_size; ++j) { if(j % 2) continue; if(2*j > z_size) return 0; if(j % 4 == 2 && (j+2) <= x_size && 2*(j+2) <= z_size) return j+2; return j; } return 0; } } /* * Multiplication Algorithm Dispatcher */ void bigint_mul(BigInt& z, const BigInt& x, const BigInt& y, word workspace[]) { const size_t x_sig_words = x.sig_words(); const size_t y_sig_words = y.sig_words(); clear_mem(z.mutable_data(), z.size()); if(x_sig_words == 1) { bigint_linmul3(z.mutable_data(), y.data(), y_sig_words, x.data()[0]); } else if(y_sig_words == 1) { bigint_linmul3(z.mutable_data(), x.data(), x_sig_words, y.data()[0]); } else if(x_sig_words <= 4 && x.size() >= 4 && y_sig_words <= 4 && y.size() >= 4 && z.size() >= 8) { bigint_comba_mul4(z.mutable_data(), x.data(), y.data()); } else if(x_sig_words <= 6 && x.size() >= 6 && y_sig_words <= 6 && y.size() >= 6 && z.size() >= 12) { bigint_comba_mul6(z.mutable_data(), x.data(), y.data()); } else if(x_sig_words <= 8 && x.size() >= 8 && y_sig_words <= 8 && y.size() >= 8 && z.size() >= 16) { bigint_comba_mul8(z.mutable_data(), x.data(), y.data()); } else if(x_sig_words <= 9 && x.size() >= 9 && y_sig_words <= 9 && y.size() >= 9 && z.size() >= 18) { bigint_comba_mul9(z.mutable_data(), x.data(), y.data()); } else if(x_sig_words <= 16 && x.size() >= 16 && y_sig_words <= 16 && y.size() >= 16 && z.size() >= 32) { bigint_comba_mul16(z.mutable_data(), x.data(), y.data()); } else if(x_sig_words < KARATSUBA_MULTIPLY_THRESHOLD || y_sig_words < KARATSUBA_MULTIPLY_THRESHOLD || !workspace) { basecase_mul(z.mutable_data(), x.data(), x_sig_words, y.data(), y_sig_words); } else { const size_t N = karatsuba_size(z.size(), x.size(), x_sig_words, y.size(), y_sig_words); if(N) karatsuba_mul(z.mutable_data(), x.data(), y.data(), N, workspace); else basecase_mul(z.mutable_data(), x.data(), x_sig_words, y.data(), y_sig_words); } } /* * Squaring Algorithm Dispatcher */ void bigint_sqr(word z[], size_t z_size, word workspace[], const word x[], size_t x_size, size_t x_sw) { BOTAN_ASSERT(z_size/2 >= x_sw, "Output size is sufficient"); if(x_sw == 1) { bigint_linmul3(z, x, x_sw, x[0]); } else if(x_sw <= 4 && x_size >= 4 && z_size >= 8) { bigint_comba_sqr4(z, x); } else if(x_sw <= 6 && x_size >= 6 && z_size >= 12) { bigint_comba_sqr6(z, x); } else if(x_sw <= 8 && x_size >= 8 && z_size >= 16) { bigint_comba_sqr8(z, x); } else if(x_sw == 9 && x_size >= 9 && z_size >= 18) { bigint_comba_sqr9(z, x); } else if(x_sw <= 16 && x_size >= 16 && z_size >= 32) { bigint_comba_sqr16(z, x); } else if(x_size < KARATSUBA_SQUARE_THRESHOLD || !workspace) { basecase_mul(z, x, x_sw, x, x_sw); } else { const size_t N = karatsuba_size(z_size, x_size, x_sw); if(N) karatsuba_sqr(z, x, N, workspace); else basecase_mul(z, x, x_sw, x, x_sw); } } }