/* * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2011,2012,2014,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : m_curve(curve), m_coord_x(0), m_coord_y(1), m_coord_z(0) { m_curve.to_rep(m_coord_x, m_monty_ws); m_curve.to_rep(m_coord_y, m_monty_ws); m_curve.to_rep(m_coord_z, m_monty_ws); } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : m_curve(curve), m_coord_x(x), m_coord_y(y), m_coord_z(1) { if(x <= 0 || x >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine x"); if(y <= 0 || y >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine y"); m_curve.to_rep(m_coord_x, m_monty_ws); m_curve.to_rep(m_coord_y, m_monty_ws); m_curve.to_rep(m_coord_z, m_monty_ws); } void PointGFp::randomize_repr(RandomNumberGenerator& rng) { if(BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS > 1) { BigInt mask; while(mask.is_zero()) mask.randomize(rng, BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS, false); m_curve.to_rep(mask, m_monty_ws); const BigInt mask2 = curve_mult(mask, mask); const BigInt mask3 = curve_mult(mask2, mask); m_coord_x = curve_mult(m_coord_x, mask2); m_coord_y = curve_mult(m_coord_y, mask3); m_coord_z = curve_mult(m_coord_z, mask); } } // Point addition void PointGFp::add(const PointGFp& rhs, std::vector& ws_bn) { if(is_zero()) { m_coord_x = rhs.m_coord_x; m_coord_y = rhs.m_coord_y; m_coord_z = rhs.m_coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = m_curve.get_p(); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; /* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ curve_sqr(rhs_z2, rhs.m_coord_z); curve_mult(U1, m_coord_x, rhs_z2); curve_mult(S1, m_coord_y, curve_mult(rhs.m_coord_z, rhs_z2)); curve_sqr(lhs_z2, m_coord_z); curve_mult(U2, rhs.m_coord_x, lhs_z2); curve_mult(S2, rhs.m_coord_y, curve_mult(m_coord_z, lhs_z2)); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x = 0; m_coord_y = 1; m_coord_z = 0; return; } curve_sqr(U2, H); curve_mult(S2, U2, H); U2 = curve_mult(U1, U2); curve_sqr(m_coord_x, r); m_coord_x -= S2; m_coord_x -= (U2 << 1); while(m_coord_x.is_negative()) m_coord_x += p; U2 -= m_coord_x; if(U2.is_negative()) U2 += p; curve_mult(m_coord_y, r, U2); m_coord_y -= curve_mult(S1, S2); if(m_coord_y.is_negative()) m_coord_y += p; curve_mult(m_coord_z, curve_mult(m_coord_z, rhs.m_coord_z), H); } // *this *= 2 void PointGFp::mult2(std::vector& ws_bn) { if(is_zero()) return; else if(m_coord_y.is_zero()) { *this = PointGFp(m_curve); // setting myself to zero return; } /* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc */ const BigInt& p = m_curve.get_p(); BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; BigInt& z4 = ws_bn[2]; BigInt& a_z4 = ws_bn[3]; BigInt& M = ws_bn[4]; BigInt& U = ws_bn[5]; BigInt& x = ws_bn[6]; BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; curve_sqr(y_2, m_coord_y); curve_mult(S, m_coord_x, y_2); S <<= 2; // * 4 while(S >= p) S -= p; curve_sqr(z4, curve_sqr(m_coord_z)); curve_mult(a_z4, m_curve.get_a_rep(), z4); M = curve_sqr(m_coord_x); M *= 3; M += a_z4; while(M >= p) M -= p; curve_sqr(x, M); x -= (S << 1); while(x.is_negative()) x += p; curve_sqr(U, y_2); U <<= 3; while(U >= p) U -= p; S -= x; while(S.is_negative()) S += p; curve_mult(y, M, S); y -= U; if(y.is_negative()) y += p; curve_mult(z, m_coord_y, m_coord_z); z <<= 1; if(z >= p) z -= p; m_coord_x = x; m_coord_y = y; m_coord_z = z; } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { std::vector ws(9); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { *this = scalar * *this; return *this; } PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, const PointGFp& p2, const BigInt& z2) { const PointGFp p3 = p1 + p2; PointGFp H(p1.get_curve()); // create as zero size_t bits_left = std::max(z1.bits(), z2.bits()); std::vector ws(9); while(bits_left) { H.mult2(ws); const bool z1_b = z1.get_bit(bits_left - 1); const bool z2_b = z2.get_bit(bits_left - 1); if(z1_b == true && z2_b == true) H.add(p3, ws); else if(z1_b) H.add(p1, ws); else if(z2_b) H.add(p2, ws); --bits_left; } if(z1.is_negative() != z2.is_negative()) H.negate(); return H; } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { //BOTAN_ASSERT(point.on_the_curve(), "Input is on the curve"); const CurveGFp& curve = point.get_curve(); const size_t scalar_bits = scalar.bits(); std::vector ws(9); PointGFp R[2] = { PointGFp(curve), point }; for(size_t i = scalar_bits; i > 0; i--) { const size_t b = scalar.get_bit(i - 1); R[b ^ 1].add(R[b], ws); R[b].mult2(ws); } if(scalar.is_negative()) R[0].negate(); //BOTAN_ASSERT(R[0].on_the_curve(), "Output is on the curve"); return R[0]; } Blinded_Point_Multiply::Blinded_Point_Multiply(const PointGFp& base, const BigInt& order, size_t h) : m_h(h > 0 ? h : 4), m_order(order), m_ws(9) { // Upper bound is a sanity check rather than hard limit if(m_h < 1 || m_h > 8) throw Invalid_Argument("Blinded_Point_Multiply invalid h param"); const CurveGFp& curve = base.get_curve(); const PointGFp inv = -base; m_U.resize(6*m_h + 3); m_U[3*m_h+0] = inv; m_U[3*m_h+1] = PointGFp::zero_of(curve); m_U[3*m_h+2] = base; for(size_t i = 1; i <= 3 * m_h + 1; ++i) { m_U[3*m_h+1+i] = m_U[3*m_h+i]; m_U[3*m_h+1+i].add(base, m_ws); m_U[3*m_h+1-i] = m_U[3*m_h+2-i]; m_U[3*m_h+1-i].add(inv, m_ws); } } PointGFp Blinded_Point_Multiply::blinded_multiply(const BigInt& scalar_in, RandomNumberGenerator& rng) { if(scalar_in.is_negative()) throw Invalid_Argument("Blinded_Point_Multiply scalar must be positive"); #if BOTAN_POINTGFP_USE_SCALAR_BLINDING // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure) const BigInt mask(rng, (m_order.bits()+1)/2, false); const BigInt scalar = scalar_in + m_order * mask; #else const BigInt& scalar = scalar_in; #endif const size_t scalar_bits = scalar.bits(); // Randomize each point representation (Coron's 3rd countermeasure) for(size_t i = 0; i != m_U.size(); ++i) m_U[i].randomize_repr(rng); PointGFp R = m_U.at(3*m_h + 2); // base point int32_t alpha = 0; R.randomize_repr(rng); /* Algorithm 7 from "Randomizing the Montgomery Powering Ladder" Duc-Phong Le, Chik How Tan and Michael Tunstall http://eprint.iacr.org/2015/657 It takes a random walk through (a subset of) the set of addition chains that end in k. */ for(size_t i = scalar_bits; i > 0; i--) { const int32_t ki = scalar.get_bit(i); // choose gamma from -h,...,h const int32_t gamma = static_cast((rng.next_byte() % (2*m_h))) - m_h; const int32_t l = gamma - 2*alpha + ki - (ki ^ 1); R.mult2(m_ws); R.add(m_U.at(3*m_h + 1 + l), m_ws); alpha = gamma; } const int32_t k0 = scalar.get_bit(0); R.add(m_U[3*m_h + 1 - alpha - (k0 ^ 1)], m_ws); //BOTAN_ASSERT(R.on_the_curve(), "Output is on the curve"); return R; } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); BigInt z2 = curve_sqr(m_coord_z); m_curve.from_rep(z2, m_monty_ws); z2 = inverse_mod(z2, m_curve.get_p()); return curve_mult(z2, m_coord_x); } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); BigInt z3 = curve_mult(m_coord_z, curve_sqr(m_coord_z)); z3 = inverse_mod(z3, m_curve.get_p()); m_curve.to_rep(z3, m_monty_ws); return curve_mult(z3, m_coord_y); } bool PointGFp::on_the_curve() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return true. If somehow the state is corrupted, which suggests a fault attack (or internal computational error), then return false. */ if(is_zero()) return true; const BigInt y2 = m_curve.from_rep(curve_sqr(m_coord_y), m_monty_ws); const BigInt x3 = curve_mult(m_coord_x, curve_sqr(m_coord_x)); const BigInt ax = curve_mult(m_coord_x, m_curve.get_a_rep()); const BigInt z2 = curve_sqr(m_coord_z); if(m_coord_z == z2) // Is z equal to 1 (in Montgomery form)? { if(y2 != m_curve.from_rep(x3 + ax + m_curve.get_b_rep(), m_monty_ws)) return false; } const BigInt z3 = curve_mult(m_coord_z, z2); const BigInt ax_z4 = curve_mult(ax, curve_sqr(z2)); const BigInt b_z6 = curve_mult(m_curve.get_b_rep(), curve_sqr(z3)); if(y2 != m_curve.from_rep(x3 + ax_z4 + b_z6, m_monty_ws)) return false; return true; } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { m_curve.swap(other.m_curve); m_coord_x.swap(other.m_coord_x); m_coord_y.swap(other.m_coord_y); m_coord_z.swap(other.m_coord_z); m_monty_ws.swap(other.m_monty_ws); } bool PointGFp::operator==(const PointGFp& other) const { if(get_curve() != other.get_curve()) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding secure_vector EC2OSP(const PointGFp& point, uint8_t format) { if(point.is_zero()) return secure_vector(1); // single 0 byte const size_t p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); secure_vector bX = BigInt::encode_1363(x, p_bytes); secure_vector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { secure_vector result; result.push_back(0x04); result += bX; result += bY; return result; } else if(format == PointGFp::COMPRESSED) { secure_vector result; result.push_back(0x02 | static_cast(y.get_bit(0))); result += bX; return result; } else if(format == PointGFp::HYBRID) { secure_vector result; result.push_back(0x06 | static_cast(y.get_bit(0))); result += bX; result += bY; return result; } else throw Invalid_Argument("EC2OSP illegal point encoding"); } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const CurveGFp& curve) { BigInt xpow3 = x * x * x; const BigInt& p = curve.get_p(); BigInt g = curve.get_a() * x; g += xpow3; g += curve.get_b(); g = g % p; BigInt z = ressol(g, p); if(z < 0) throw Illegal_Point("error during EC point decompression"); if(z.get_bit(0) != yMod2) z = p - z; return z; } } PointGFp OS2ECP(const uint8_t data[], size_t data_len, const CurveGFp& curve) { if(data_len <= 1) return PointGFp(curve); // return zero const uint8_t pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); const bool y_mod_2 = ((pc & 0x01) == 1); y = decompress_point(y_mod_2, x, curve); } else if(pc == 4) { const size_t l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const size_t l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); const bool y_mod_2 = ((pc & 0x01) == 1); if(decompress_point(y_mod_2, x, curve) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type " + std::to_string(pc)); PointGFp result(curve, x, y); if(!result.on_the_curve()) throw Illegal_Point("OS2ECP: Decoded point was not on the curve"); return result; } }