/* * Point arithmetic on elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2008-2011,2012,2014,2015 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { PointGFp::PointGFp(const CurveGFp& curve) : m_curve(curve), m_coord_x(0), m_coord_y(1), m_coord_z(0) { secure_vector monty_ws; m_curve.to_rep(m_coord_x, monty_ws); m_curve.to_rep(m_coord_y, monty_ws); m_curve.to_rep(m_coord_z, monty_ws); } PointGFp::PointGFp(const CurveGFp& curve, const BigInt& x, const BigInt& y) : m_curve(curve), m_coord_x(x), m_coord_y(y), m_coord_z(1) { if(x <= 0 || x >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine x"); if(y <= 0 || y >= curve.get_p()) throw Invalid_Argument("Invalid PointGFp affine y"); secure_vector monty_ws; m_curve.to_rep(m_coord_x, monty_ws); m_curve.to_rep(m_coord_y, monty_ws); m_curve.to_rep(m_coord_z, monty_ws); } void PointGFp::randomize_repr(RandomNumberGenerator& rng) { if(BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS > 1) { BigInt mask; while(mask.is_zero()) mask.randomize(rng, BOTAN_POINTGFP_RANDOMIZE_BLINDING_BITS, false); secure_vector monty_ws; m_curve.to_rep(mask, monty_ws); const BigInt mask2 = m_curve.mul_to_tmp(mask, mask, monty_ws); const BigInt mask3 = m_curve.mul_to_tmp(mask2, mask, monty_ws); m_coord_x = m_curve.mul_to_tmp(m_coord_x, mask2, monty_ws); m_coord_y = m_curve.mul_to_tmp(m_coord_y, mask3, monty_ws); m_coord_z = m_curve.mul_to_tmp(m_coord_z, mask, monty_ws); } } // Point addition void PointGFp::add(const PointGFp& rhs, std::vector& ws_bn) { if(is_zero()) { m_coord_x = rhs.m_coord_x; m_coord_y = rhs.m_coord_y; m_coord_z = rhs.m_coord_z; return; } else if(rhs.is_zero()) return; const BigInt& p = m_curve.get_p(); const size_t cap_size = 2*m_curve.get_p_words() + 2; for(size_t i = 0; i != ws_bn.size(); ++i) ws_bn[i].ensure_capacity(cap_size); BigInt& rhs_z2 = ws_bn[0]; BigInt& U1 = ws_bn[1]; BigInt& S1 = ws_bn[2]; BigInt& lhs_z2 = ws_bn[3]; BigInt& U2 = ws_bn[4]; BigInt& S2 = ws_bn[5]; BigInt& H = ws_bn[6]; BigInt& r = ws_bn[7]; BigInt& tmp = ws_bn[9]; secure_vector& monty_ws = ws_bn[8].get_word_vector(); /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 */ m_curve.sqr(rhs_z2, rhs.m_coord_z, monty_ws); m_curve.mul(U1, m_coord_x, rhs_z2, monty_ws); m_curve.mul(tmp, rhs.m_coord_z, rhs_z2, monty_ws); // z^3 m_curve.mul(S1, m_coord_y, tmp, monty_ws); m_curve.sqr(lhs_z2, m_coord_z, monty_ws); m_curve.mul(U2, rhs.m_coord_x, lhs_z2, monty_ws); m_curve.mul(tmp, m_coord_z, lhs_z2, monty_ws); m_curve.mul(S2, rhs.m_coord_y, tmp, monty_ws); H = U2; H -= U1; if(H.is_negative()) H += p; r = S2; r -= S1; if(r.is_negative()) r += p; if(H.is_zero()) { if(r.is_zero()) { mult2(ws_bn); return; } // setting to zero: m_coord_x = 0; m_coord_y = 1; m_coord_z = 0; return; } m_curve.sqr(U2, H, monty_ws); m_curve.mul(S2, U2, H, monty_ws); m_curve.mul(tmp, U1, U2, monty_ws); U2 = tmp; m_curve.sqr(m_coord_x, r, monty_ws); m_coord_x -= S2; m_coord_x -= (U2 << 1); while(m_coord_x.is_negative()) m_coord_x += p; U2 -= m_coord_x; if(U2.is_negative()) U2 += p; m_curve.mul(m_coord_y, r, U2, monty_ws); m_curve.mul(tmp, S1, S2, monty_ws); m_coord_y -= tmp; if(m_coord_y.is_negative()) m_coord_y += p; m_curve.mul(tmp, m_coord_z, rhs.m_coord_z, monty_ws); m_curve.mul(m_coord_z, tmp, H, monty_ws); } // *this *= 2 void PointGFp::mult2(std::vector& ws_bn) { if(is_zero()) return; if(m_coord_y.is_zero()) { *this = PointGFp(m_curve); // setting myself to zero return; } /* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc */ const size_t cap_size = 2*m_curve.get_p_words() + 2; for(size_t i = 0; i != ws_bn.size(); ++i) ws_bn[i].ensure_capacity(cap_size); const BigInt& p = m_curve.get_p(); BigInt& y_2 = ws_bn[0]; BigInt& S = ws_bn[1]; BigInt& tmp = ws_bn[2]; BigInt& a_z4 = ws_bn[3]; BigInt& M = ws_bn[4]; BigInt& U = ws_bn[5]; BigInt& x = ws_bn[6]; BigInt& y = ws_bn[7]; BigInt& z = ws_bn[8]; secure_vector& monty_ws = ws_bn[9].get_word_vector(); m_curve.sqr(y_2, m_coord_y, monty_ws); m_curve.mul(S, m_coord_x, y_2, monty_ws); S <<= 2; // * 4 while(S >= p) S -= p; m_curve.sqr(a_z4, m_coord_z, monty_ws); // z^2 m_curve.sqr(tmp, a_z4, monty_ws); // z^4 m_curve.mul(a_z4, m_curve.get_a_rep(), tmp, monty_ws); m_curve.sqr(M, m_coord_x, monty_ws); M *= 3; M += a_z4; while(M >= p) M -= p; m_curve.sqr(x, M, monty_ws); x -= (S << 1); while(x.is_negative()) x += p; m_curve.sqr(U, y_2, monty_ws); U <<= 3; while(U >= p) U -= p; S -= x; while(S.is_negative()) S += p; m_curve.mul(y, M, S, monty_ws); y -= U; if(y.is_negative()) y += p; m_curve.mul(z, m_coord_y, m_coord_z, monty_ws); z <<= 1; if(z >= p) z -= p; m_coord_x = x; m_coord_y = y; m_coord_z = z; } // arithmetic operators PointGFp& PointGFp::operator+=(const PointGFp& rhs) { std::vector ws(PointGFp::WORKSPACE_SIZE); add(rhs, ws); return *this; } PointGFp& PointGFp::operator-=(const PointGFp& rhs) { PointGFp minus_rhs = PointGFp(rhs).negate(); if(is_zero()) *this = minus_rhs; else *this += minus_rhs; return *this; } PointGFp& PointGFp::operator*=(const BigInt& scalar) { *this = scalar * *this; return *this; } PointGFp multi_exponentiate(const PointGFp& p1, const BigInt& z1, const PointGFp& p2, const BigInt& z2) { PointGFp H = p1.zero(); const size_t z_bits = std::max(z1.bits(), z2.bits()); std::vector ws(PointGFp::WORKSPACE_SIZE); const PointGFp M[4] = { p1.zero(), p1, p2, p1 + p2, }; for(size_t i = 0; i != z_bits; ++i) { H.mult2(ws); const uint8_t z1_b = z1.get_bit(z_bits - i - 1); const uint8_t z2_b = z2.get_bit(z_bits - i - 1); const uint8_t z12 = (2*z2_b) + z1_b; H.add(M[z12], ws); } if(z1.is_negative() != z2.is_negative()) H.negate(); return H; } PointGFp operator*(const BigInt& scalar, const PointGFp& point) { //BOTAN_ASSERT(point.on_the_curve(), "Input is on the curve"); const size_t scalar_bits = scalar.bits(); std::vector ws(PointGFp::WORKSPACE_SIZE); PointGFp R[2] = { point.zero(), point }; for(size_t i = scalar_bits; i > 0; i--) { const size_t b = scalar.get_bit(i - 1); R[b ^ 1].add(R[b], ws); R[b].mult2(ws); } if(scalar.is_negative()) R[0].negate(); //BOTAN_ASSERT(R[0].on_the_curve(), "Output is on the curve"); return R[0]; } BigInt PointGFp::get_affine_x() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); secure_vector monty_ws; BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws); m_curve.from_rep(z2, monty_ws); z2 = inverse_mod(z2, m_curve.get_p()); return m_curve.mul_to_tmp(z2, m_coord_x, monty_ws); } BigInt PointGFp::get_affine_y() const { if(is_zero()) throw Illegal_Transformation("Cannot convert zero point to affine"); secure_vector monty_ws; BigInt z3 = m_curve.mul_to_tmp(m_coord_z, m_curve.sqr_to_tmp(m_coord_z, monty_ws), monty_ws); z3 = inverse_mod(z3, m_curve.get_p()); m_curve.to_rep(z3, monty_ws); return m_curve.mul_to_tmp(z3, m_coord_y, monty_ws); } bool PointGFp::on_the_curve() const { /* Is the point still on the curve?? (If everything is correct, the point is always on its curve; then the function will return true. If somehow the state is corrupted, which suggests a fault attack (or internal computational error), then return false. */ if(is_zero()) return true; secure_vector monty_ws; const BigInt y2 = m_curve.from_rep(m_curve.sqr_to_tmp(m_coord_y, monty_ws), monty_ws); const BigInt x3 = m_curve.mul_to_tmp(m_coord_x, m_curve.sqr_to_tmp(m_coord_x, monty_ws), monty_ws); const BigInt ax = m_curve.mul_to_tmp(m_coord_x, m_curve.get_a_rep(), monty_ws); const BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws); if(m_coord_z == z2) // Is z equal to 1 (in Montgomery form)? { if(y2 != m_curve.from_rep(x3 + ax + m_curve.get_b_rep(), monty_ws)) return false; } const BigInt z3 = m_curve.mul_to_tmp(m_coord_z, z2, monty_ws); const BigInt ax_z4 = m_curve.mul_to_tmp(ax, m_curve.sqr_to_tmp(z2, monty_ws), monty_ws); const BigInt b_z6 = m_curve.mul_to_tmp(m_curve.get_b_rep(), m_curve.sqr_to_tmp(z3, monty_ws), monty_ws); if(y2 != m_curve.from_rep(x3 + ax_z4 + b_z6, monty_ws)) return false; return true; } // swaps the states of *this and other, does not throw! void PointGFp::swap(PointGFp& other) { m_curve.swap(other.m_curve); m_coord_x.swap(other.m_coord_x); m_coord_y.swap(other.m_coord_y); m_coord_z.swap(other.m_coord_z); } bool PointGFp::operator==(const PointGFp& other) const { if(m_curve != other.m_curve) return false; // If this is zero, only equal if other is also zero if(is_zero()) return other.is_zero(); return (get_affine_x() == other.get_affine_x() && get_affine_y() == other.get_affine_y()); } // encoding and decoding secure_vector EC2OSP(const PointGFp& point, uint8_t format) { if(point.is_zero()) return secure_vector(1); // single 0 byte const size_t p_bytes = point.get_curve().get_p().bytes(); BigInt x = point.get_affine_x(); BigInt y = point.get_affine_y(); secure_vector bX = BigInt::encode_1363(x, p_bytes); secure_vector bY = BigInt::encode_1363(y, p_bytes); if(format == PointGFp::UNCOMPRESSED) { secure_vector result; result.push_back(0x04); result += bX; result += bY; return result; } else if(format == PointGFp::COMPRESSED) { secure_vector result; result.push_back(0x02 | static_cast(y.get_bit(0))); result += bX; return result; } else if(format == PointGFp::HYBRID) { secure_vector result; result.push_back(0x06 | static_cast(y.get_bit(0))); result += bX; result += bY; return result; } else throw Invalid_Argument("EC2OSP illegal point encoding"); } namespace { BigInt decompress_point(bool yMod2, const BigInt& x, const BigInt& curve_p, const BigInt& curve_a, const BigInt& curve_b) { BigInt xpow3 = x * x * x; BigInt g = curve_a * x; g += xpow3; g += curve_b; g = g % curve_p; BigInt z = ressol(g, curve_p); if(z < 0) throw Illegal_Point("error during EC point decompression"); if(z.get_bit(0) != yMod2) z = curve_p - z; return z; } } PointGFp OS2ECP(const uint8_t data[], size_t data_len, const CurveGFp& curve) { // Should we really be doing this? if(data_len <= 1) return PointGFp(curve); // return zero std::pair xy = OS2ECP(data, data_len, curve.get_p(), curve.get_a(), curve.get_b()); PointGFp point(curve, xy.first, xy.second); if(!point.on_the_curve()) throw Illegal_Point("OS2ECP: Decoded point was not on the curve"); return point; } std::pair OS2ECP(const uint8_t data[], size_t data_len, const BigInt& curve_p, const BigInt& curve_a, const BigInt& curve_b) { if(data_len <= 1) throw Decoding_Error("OS2ECP invalid point"); const uint8_t pc = data[0]; BigInt x, y; if(pc == 2 || pc == 3) { //compressed form x = BigInt::decode(&data[1], data_len - 1); const bool y_mod_2 = ((pc & 0x01) == 1); y = decompress_point(y_mod_2, x, curve_p, curve_a, curve_b); } else if(pc == 4) { const size_t l = (data_len - 1) / 2; // uncompressed form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); } else if(pc == 6 || pc == 7) { const size_t l = (data_len - 1) / 2; // hybrid form x = BigInt::decode(&data[1], l); y = BigInt::decode(&data[l+1], l); const bool y_mod_2 = ((pc & 0x01) == 1); if(decompress_point(y_mod_2, x, curve_p, curve_a, curve_b) != y) throw Illegal_Point("OS2ECP: Decoding error in hybrid format"); } else throw Invalid_Argument("OS2ECP: Unknown format type " + std::to_string(pc)); return std::make_pair(x, y); } }