/* * Elliptic curves over GF(p) * * (C) 2007 Martin Doering, Christoph Ludwig, Falko Strenzke * 2010-2011,2012,2014 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #ifndef BOTAN_GFP_CURVE_H__ #define BOTAN_GFP_CURVE_H__ #include #include namespace Botan { class CurveGFp_Repr { public: virtual ~CurveGFp_Repr() {} virtual const BigInt& get_p() const = 0; virtual const BigInt& get_a() const = 0; virtual const BigInt& get_b() const = 0; virtual size_t get_p_words() const = 0; /* * Returns to_curve_rep(get_a()) */ virtual const BigInt& get_a_rep() const = 0; /* * Returns to_curve_rep(get_b()) */ virtual const BigInt& get_b_rep() const = 0; virtual void to_curve_rep(BigInt& x, secure_vector& ws) const = 0; virtual void from_curve_rep(BigInt& x, secure_vector& ws) const = 0; virtual void curve_mul(BigInt& z, const BigInt& x, const BigInt& y, secure_vector& ws) const = 0; virtual void curve_sqr(BigInt& z, const BigInt& x, secure_vector& ws) const = 0; virtual void normalize(BigInt& x, secure_vector& ws, size_t bound) const; }; /** * This class represents an elliptic curve over GF(p) */ class BOTAN_DLL CurveGFp { public: /** * Create an uninitialized CurveGFp */ CurveGFp() {} /** * Construct the elliptic curve E: y^2 = x^3 + ax + b over GF(p) * @param p prime number of the field * @param a first coefficient * @param b second coefficient */ CurveGFp(const BigInt& p, const BigInt& a, const BigInt& b) : m_repr(choose_repr(p, a, b)) { } CurveGFp(const CurveGFp&) = default; CurveGFp& operator=(const CurveGFp&) = default; /** * @return curve coefficient a */ const BigInt& get_a() const { return m_repr->get_a(); } /** * @return curve coefficient b */ const BigInt& get_b() const { return m_repr->get_b(); } /** * Get prime modulus of the field of the curve * @return prime modulus of the field of the curve */ const BigInt& get_p() const { return m_repr->get_p(); } const BigInt& get_a_rep() const { return m_repr->get_a_rep(); } const BigInt& get_b_rep() const { return m_repr->get_b_rep(); } void to_rep(BigInt& x, secure_vector& ws) const { m_repr->to_curve_rep(x, ws); } void from_rep(BigInt& x, secure_vector& ws) const { m_repr->from_curve_rep(x, ws); } BigInt from_rep(const BigInt& x, secure_vector& ws) const { BigInt xt(x); m_repr->from_curve_rep(xt, ws); return xt; } // TODO: from_rep taking && ref void mul(BigInt& z, const BigInt& x, const BigInt& y, secure_vector& ws) const { m_repr->curve_mul(z, x, y, ws); } BigInt mul(const BigInt& x, const BigInt& y, secure_vector& ws) const { BigInt z; m_repr->curve_mul(z, x, y, ws); return z; } void sqr(BigInt& z, const BigInt& x, secure_vector& ws) const { m_repr->curve_sqr(z, x, ws); } BigInt sqr(const BigInt& x, secure_vector& ws) const { BigInt z; m_repr->curve_sqr(z, x, ws); return z; } /** * Adjust x to be in [0,p) * @param bound if greater than zero, assume that no more than bound * additions or subtractions are required to move x into range. */ void normalize(BigInt& x, secure_vector& ws, size_t bound = 0) const { m_repr->normalize(x, ws, bound); } void swap(CurveGFp& other) { std::swap(m_repr, other.m_repr); } private: static std::shared_ptr choose_repr(const BigInt& p, const BigInt& a, const BigInt& b); std::shared_ptr m_repr; }; /** * Equality operator * @param lhs a curve * @param rhs a curve * @return true iff lhs is the same as rhs */ inline bool operator==(const CurveGFp& lhs, const CurveGFp& rhs) { return (lhs.get_p() == rhs.get_p()) && (lhs.get_a() == rhs.get_a()) && (lhs.get_b() == rhs.get_b()); } inline bool operator!=(const CurveGFp& lhs, const CurveGFp& rhs) { return !(lhs == rhs); } } namespace std { template<> inline void swap(Botan::CurveGFp& curve1, Botan::CurveGFp& curve2) noexcept { curve1.swap(curve2); } } // namespace std #endif