/* * BigInt Base * (C) 1999-2011,2012,2014 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include #include #include namespace Botan { BigInt::BigInt(const word words[], size_t length) { m_reg.assign(words, words + length); } /* * Construct a BigInt from a regular number */ BigInt::BigInt(uint64_t n) { if(n == 0) return; const size_t limbs_needed = sizeof(uint64_t) / sizeof(word); m_reg.resize(limbs_needed); for(size_t i = 0; i != limbs_needed; ++i) m_reg[i] = ((n >> (i*BOTAN_MP_WORD_BITS)) & MP_WORD_MASK); } /* * Construct a BigInt of the specified size */ BigInt::BigInt(Sign s, size_t size) { m_reg.resize(round_up(size, 8)); m_signedness = s; } /* * Copy constructor */ BigInt::BigInt(const BigInt& other) { m_reg = other.m_reg; m_signedness = other.m_signedness; } /* * Construct a BigInt from a string */ BigInt::BigInt(const std::string& str) { Base base = Decimal; size_t markers = 0; bool negative = false; if(str.length() > 0 && str[0] == '-') { markers += 1; negative = true; } if(str.length() > markers + 2 && str[markers ] == '0' && str[markers + 1] == 'x') { markers += 2; base = Hexadecimal; } *this = decode(cast_char_ptr_to_uint8(str.data()) + markers, str.length() - markers, base); if(negative) set_sign(Negative); else set_sign(Positive); } BigInt::BigInt(const uint8_t input[], size_t length) { binary_decode(input, length); } /* * Construct a BigInt from an encoded BigInt */ BigInt::BigInt(const uint8_t input[], size_t length, Base base) { *this = decode(input, length, base); } BigInt::BigInt(const uint8_t buf[], size_t length, size_t max_bits) { const size_t max_bytes = std::min(length, (max_bits + 7) / 8); *this = decode(buf, max_bytes); const size_t b = this->bits(); if(b > max_bits) { *this >>= (b - max_bits); } } /* * Construct a BigInt from an encoded BigInt */ BigInt::BigInt(RandomNumberGenerator& rng, size_t bits, bool set_high_bit) { randomize(rng, bits, set_high_bit); } int32_t BigInt::cmp_word(word other) const { if(is_negative()) return -1; // other is positive ... const size_t sw = this->sig_words(); if(sw > 1) return 1; // must be larger since other is just one word ... return bigint_cmp(this->data(), sw, &other, 1); } /* * Comparison Function */ int32_t BigInt::cmp(const BigInt& other, bool check_signs) const { if(check_signs) { if(other.is_positive() && this->is_negative()) return -1; if(other.is_negative() && this->is_positive()) return 1; if(other.is_negative() && this->is_negative()) return (-bigint_cmp(this->data(), this->sig_words(), other.data(), other.sig_words())); } return bigint_cmp(this->data(), this->sig_words(), other.data(), other.sig_words()); } void BigInt::encode_words(word out[], size_t size) const { const size_t words = sig_words(); if(words > size) throw Encoding_Error("BigInt::encode_words value too large to encode"); clear_mem(out, size); copy_mem(out, data(), words); } /* * Return bits {offset...offset+length} */ uint32_t BigInt::get_substring(size_t offset, size_t length) const { if(length > 32) throw Invalid_Argument("BigInt::get_substring: Substring size " + std::to_string(length) + " too big"); uint64_t piece = 0; for(size_t i = 0; i != 8; ++i) { const uint8_t part = byte_at((offset / 8) + (7-i)); piece = (piece << 8) | part; } const uint64_t mask = (static_cast(1) << length) - 1; const size_t shift = (offset % 8); return static_cast((piece >> shift) & mask); } /* * Convert this number to a uint32_t, if possible */ uint32_t BigInt::to_u32bit() const { if(is_negative()) throw Encoding_Error("BigInt::to_u32bit: Number is negative"); if(bits() > 32) throw Encoding_Error("BigInt::to_u32bit: Number is too big to convert"); uint32_t out = 0; for(size_t i = 0; i != 4; ++i) out = (out << 8) | byte_at(3-i); return out; } /* * Set bit number n */ void BigInt::set_bit(size_t n) { const size_t which = n / BOTAN_MP_WORD_BITS; const word mask = static_cast(1) << (n % BOTAN_MP_WORD_BITS); if(which >= size()) grow_to(which + 1); m_reg[which] |= mask; } /* * Clear bit number n */ void BigInt::clear_bit(size_t n) { const size_t which = n / BOTAN_MP_WORD_BITS; const word mask = static_cast(1) << (n % BOTAN_MP_WORD_BITS); if(which < size()) m_reg[which] &= ~mask; } size_t BigInt::bytes() const { return round_up(bits(), 8) / 8; } /* * Count how many bits are being used */ size_t BigInt::bits() const { const size_t words = sig_words(); if(words == 0) return 0; const size_t full_words = words - 1; return (full_words * BOTAN_MP_WORD_BITS + high_bit(word_at(full_words))); } /* * Calcluate the size in a certain base */ size_t BigInt::encoded_size(Base base) const { static const double LOG_2_BASE_10 = 0.30102999566; if(base == Binary) return bytes(); else if(base == Hexadecimal) return 2*bytes(); else if(base == Decimal) return static_cast((bits() * LOG_2_BASE_10) + 1); else throw Invalid_Argument("Unknown base for BigInt encoding"); } /* * Return the negation of this number */ BigInt BigInt::operator-() const { BigInt x = (*this); x.flip_sign(); return x; } void BigInt::reduce_below(const BigInt& p, secure_vector& ws) { if(p.is_negative()) throw Invalid_Argument("BigInt::reduce_below mod must be positive"); const size_t p_words = p.sig_words(); if(size() < p_words + 1) grow_to(p_words + 1); if(ws.size() < p_words + 1) ws.resize(p_words + 1); clear_mem(ws.data(), ws.size()); for(;;) { word borrow = bigint_sub3(ws.data(), data(), p_words + 1, p.data(), p_words); if(borrow) break; m_reg.swap(ws); } } /* * Return the absolute value of this number */ BigInt BigInt::abs() const { BigInt x = (*this); x.set_sign(Positive); return x; } void BigInt::grow_to(size_t n) { if(n > size()) { if(n <= m_reg.capacity()) m_reg.resize(m_reg.capacity()); else m_reg.resize(round_up(n, 8)); } } /* * Encode this number into bytes */ void BigInt::binary_encode(uint8_t output[]) const { const size_t sig_bytes = bytes(); for(size_t i = 0; i != sig_bytes; ++i) output[sig_bytes-i-1] = byte_at(i); } /* * Set this number to the value in buf */ void BigInt::binary_decode(const uint8_t buf[], size_t length) { const size_t WORD_BYTES = sizeof(word); clear(); m_reg.resize(round_up((length / WORD_BYTES) + 1, 8)); for(size_t i = 0; i != length / WORD_BYTES; ++i) { const size_t top = length - WORD_BYTES*i; for(size_t j = WORD_BYTES; j > 0; --j) m_reg[i] = (m_reg[i] << 8) | buf[top - j]; } for(size_t i = 0; i != length % WORD_BYTES; ++i) m_reg[length / WORD_BYTES] = (m_reg[length / WORD_BYTES] << 8) | buf[i]; } void BigInt::shrink_to_fit(size_t min_size) { const size_t words = std::max(min_size, sig_words()); m_reg.resize(words); } #if defined(BOTAN_HAS_VALGRIND) void BigInt::const_time_poison() const { CT::poison(m_reg.data(), m_reg.size()); } void BigInt::const_time_unpoison() const { CT::unpoison(m_reg.data(), m_reg.size()); } #endif void BigInt::const_time_lookup(secure_vector& output, const std::vector& vec, size_t idx) { const size_t words = output.size(); clear_mem(output.data(), output.size()); CT::poison(&idx, sizeof(idx)); for(size_t i = 0; i != vec.size(); ++i) { BOTAN_ASSERT(vec[i].size() >= words, "Word size as expected in const_time_lookup"); const word mask = CT::is_equal(i, idx); for(size_t w = 0; w != words; ++w) output[w] |= CT::select(mask, vec[i].word_at(w), 0); } CT::unpoison(idx); CT::unpoison(output.data(), output.size()); } }