/* * SHA-3 * (C) 2010,2016 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include #include namespace Botan { //static void SHA_3::permute(uint64_t A[25]) { static const uint64_t RC[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; for(size_t i = 0; i != 24; ++i) { const uint64_t C0 = A[0] ^ A[5] ^ A[10] ^ A[15] ^ A[20]; const uint64_t C1 = A[1] ^ A[6] ^ A[11] ^ A[16] ^ A[21]; const uint64_t C2 = A[2] ^ A[7] ^ A[12] ^ A[17] ^ A[22]; const uint64_t C3 = A[3] ^ A[8] ^ A[13] ^ A[18] ^ A[23]; const uint64_t C4 = A[4] ^ A[9] ^ A[14] ^ A[19] ^ A[24]; const uint64_t D0 = rotate_left(C0, 1) ^ C3; const uint64_t D1 = rotate_left(C1, 1) ^ C4; const uint64_t D2 = rotate_left(C2, 1) ^ C0; const uint64_t D3 = rotate_left(C3, 1) ^ C1; const uint64_t D4 = rotate_left(C4, 1) ^ C2; const uint64_t B00 = A[ 0] ^ D1; const uint64_t B10 = rotate_left(A[ 1] ^ D2, 1); const uint64_t B20 = rotate_left(A[ 2] ^ D3, 62); const uint64_t B05 = rotate_left(A[ 3] ^ D4, 28); const uint64_t B15 = rotate_left(A[ 4] ^ D0, 27); const uint64_t B16 = rotate_left(A[ 5] ^ D1, 36); const uint64_t B01 = rotate_left(A[ 6] ^ D2, 44); const uint64_t B11 = rotate_left(A[ 7] ^ D3, 6); const uint64_t B21 = rotate_left(A[ 8] ^ D4, 55); const uint64_t B06 = rotate_left(A[ 9] ^ D0, 20); const uint64_t B07 = rotate_left(A[10] ^ D1, 3); const uint64_t B17 = rotate_left(A[11] ^ D2, 10); const uint64_t B02 = rotate_left(A[12] ^ D3, 43); const uint64_t B12 = rotate_left(A[13] ^ D4, 25); const uint64_t B22 = rotate_left(A[14] ^ D0, 39); const uint64_t B23 = rotate_left(A[15] ^ D1, 41); const uint64_t B08 = rotate_left(A[16] ^ D2, 45); const uint64_t B18 = rotate_left(A[17] ^ D3, 15); const uint64_t B03 = rotate_left(A[18] ^ D4, 21); const uint64_t B13 = rotate_left(A[19] ^ D0, 8); const uint64_t B14 = rotate_left(A[20] ^ D1, 18); const uint64_t B24 = rotate_left(A[21] ^ D2, 2); const uint64_t B09 = rotate_left(A[22] ^ D3, 61); const uint64_t B19 = rotate_left(A[23] ^ D4, 56); const uint64_t B04 = rotate_left(A[24] ^ D0, 14); A[ 0] = B00 ^ (~B01 & B02); A[ 1] = B01 ^ (~B02 & B03); A[ 2] = B02 ^ (~B03 & B04); A[ 3] = B03 ^ (~B04 & B00); A[ 4] = B04 ^ (~B00 & B01); A[ 5] = B05 ^ (~B06 & B07); A[ 6] = B06 ^ (~B07 & B08); A[ 7] = B07 ^ (~B08 & B09); A[ 8] = B08 ^ (~B09 & B05); A[ 9] = B09 ^ (~B05 & B06); A[10] = B10 ^ (~B11 & B12); A[11] = B11 ^ (~B12 & B13); A[12] = B12 ^ (~B13 & B14); A[13] = B13 ^ (~B14 & B10); A[14] = B14 ^ (~B10 & B11); A[15] = B15 ^ (~B16 & B17); A[16] = B16 ^ (~B17 & B18); A[17] = B17 ^ (~B18 & B19); A[18] = B18 ^ (~B19 & B15); A[19] = B19 ^ (~B15 & B16); A[20] = B20 ^ (~B21 & B22); A[21] = B21 ^ (~B22 & B23); A[22] = B22 ^ (~B23 & B24); A[23] = B23 ^ (~B24 & B20); A[24] = B24 ^ (~B20 & B21); A[0] ^= RC[i]; } } SHA_3::SHA_3(size_t output_bits) : m_output_bits(output_bits), m_bitrate(1600 - 2*output_bits), m_S(25), m_S_pos(0) { // We only support the parameters for SHA-3 in this constructor if(output_bits != 224 && output_bits != 256 && output_bits != 384 && output_bits != 512) throw Invalid_Argument("SHA_3: Invalid output length " + std::to_string(output_bits)); } std::string SHA_3::name() const { return "SHA-3(" + std::to_string(m_output_bits) + ")"; } HashFunction* SHA_3::clone() const { return new SHA_3(m_output_bits); } void SHA_3::clear() { zeroise(m_S); m_S_pos = 0; } //static size_t SHA_3::absorb(size_t bitrate, secure_vector& S, size_t S_pos, const uint8_t input[], size_t length) { while(length > 0) { size_t to_take = std::min(length, bitrate / 8 - S_pos); length -= to_take; while(to_take && S_pos % 8) { S[S_pos / 8] ^= static_cast(input[0]) << (8 * (S_pos % 8)); ++S_pos; ++input; --to_take; } while(to_take && to_take % 8 == 0) { S[S_pos / 8] ^= load_le(input, 0); S_pos += 8; input += 8; to_take -= 8; } while(to_take) { S[S_pos / 8] ^= static_cast(input[0]) << (8 * (S_pos % 8)); ++S_pos; ++input; --to_take; } if(S_pos == bitrate / 8) { SHA_3::permute(S.data()); S_pos = 0; } } return S_pos; } //static void SHA_3::expand(size_t bitrate, secure_vector& S, uint8_t output[], size_t output_length) { BOTAN_ARG_CHECK(bitrate % 8 == 0); size_t Si = 0; for(size_t i = 0; i != output_length; ++i) { if(i > 0) { if(i % (bitrate / 8) == 0) { SHA_3::permute(S.data()); Si = 0; } else if(i % 8 == 0) { Si += 1; } } output[i] = get_byte(7 - (i % 8), S[Si]); } } void SHA_3::add_data(const uint8_t input[], size_t length) { m_S_pos = SHA_3::absorb(m_bitrate, m_S, m_S_pos, input, length); } void SHA_3::final_result(uint8_t output[]) { std::vector padding(m_bitrate / 8 - m_S_pos); padding[0] = 0x06; padding[padding.size()-1] |= 0x80; add_data(padding.data(), padding.size()); /* * We never have to run the permutation again because we only support * limited output lengths */ for(size_t i = 0; i != m_output_bits/8; ++i) output[i] = get_byte(7 - (i % 8), m_S[i/8]); clear(); } }