/* * Format Preserving Encryption (FE1 scheme) * (C) 2009 Jack Lloyd * * Distributed under the terms of the Botan license */ #include #include #include #include #include namespace Botan { namespace FPE { namespace { // Normally FPE is for SSNs, CC#s, etc, nothing too big const size_t MAX_N_BYTES = 128/8; /* * Factor n into a and b which are as close together as possible. * Assumes n is composed mostly of small factors which is the case for * typical uses of FPE (typically, n is a power of 10) * * Want a >= b since the safe number of rounds is 2+log_a(b); if a >= b * then this is always 3 */ void factor(BigInt n, BigInt& a, BigInt& b) { a = 1; b = 1; size_t n_low_zero = low_zero_bits(n); a <<= (n_low_zero / 2); b <<= n_low_zero - (n_low_zero / 2); n >>= n_low_zero; for(size_t i = 0; i != PRIME_TABLE_SIZE; ++i) { while(n % PRIMES[i] == 0) { a *= PRIMES[i]; if(a > b) std::swap(a, b); n /= PRIMES[i]; } } if(a > b) std::swap(a, b); a *= n; if(a < b) std::swap(a, b); if(a <= 1 || b <= 1) throw std::runtime_error("Could not factor n for use in FPE"); } /* * According to a paper by Rogaway, Bellare, etc, the min safe number * of rounds to use for FPE is 2+log_a(b). If a >= b then log_a(b) <= 1 * so 3 rounds is safe. The FPE factorization routine should always * return a >= b, so just confirm that and return 3. */ size_t rounds(const BigInt& a, const BigInt& b) { if(a < b) throw std::logic_error("FPE rounds: a < b"); return 3; } /* * A simple round function based on HMAC(SHA-256) */ class FPE_Encryptor { public: FPE_Encryptor(const SymmetricKey& key, const BigInt& n, const std::vector& tweak); BigInt operator()(size_t i, const BigInt& R); private: std::unique_ptr mac; std::vector mac_n_t; }; FPE_Encryptor::FPE_Encryptor(const SymmetricKey& key, const BigInt& n, const std::vector& tweak) { mac.reset(new HMAC(new SHA_256)); mac->set_key(key); std::vector n_bin = BigInt::encode(n); if(n_bin.size() > MAX_N_BYTES) throw std::runtime_error("N is too large for FPE encryption"); mac->update_be(static_cast(n_bin.size())); mac->update(&n_bin[0], n_bin.size()); mac->update_be(static_cast(tweak.size())); mac->update(&tweak[0], tweak.size()); mac_n_t = unlock(mac->final()); } BigInt FPE_Encryptor::operator()(size_t round_no, const BigInt& R) { secure_vector r_bin = BigInt::encode_locked(R); mac->update(mac_n_t); mac->update_be(static_cast(round_no)); mac->update_be(static_cast(r_bin.size())); mac->update(&r_bin[0], r_bin.size()); secure_vector X = mac->final(); return BigInt(&X[0], X.size()); } } /* * Generic Z_n FPE encryption, FE1 scheme */ BigInt fe1_encrypt(const BigInt& n, const BigInt& X0, const SymmetricKey& key, const std::vector& tweak) { FPE_Encryptor F(key, n, tweak); BigInt a, b; factor(n, a, b); const size_t r = rounds(a, b); BigInt X = X0; for(size_t i = 0; i != r; ++i) { BigInt L = X / b; BigInt R = X % b; BigInt W = (L + F(i, R)) % a; X = a * R + W; } return X; } /* * Generic Z_n FPE decryption, FD1 scheme */ BigInt fe1_decrypt(const BigInt& n, const BigInt& X0, const SymmetricKey& key, const std::vector& tweak) { FPE_Encryptor F(key, n, tweak); BigInt a, b; factor(n, a, b); const size_t r = rounds(a, b); BigInt X = X0; for(size_t i = 0; i != r; ++i) { BigInt W = X % a; BigInt R = X / a; BigInt L = (W - F(r-i-1, R)) % a; X = b * L + R; } return X; } } }