/* * SM4 * (C) 2017 Ribose Inc * * Botan is released under the Simplified BSD License (see license.txt) */ #include #include namespace Botan { namespace SM4_F { const uint8_t SBOX[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 }; inline uint32_t T(uint32_t b) { /* TODO: could convert this to 4 8->32 bit tables combined with xor. It was about 66% faster (110 MiB->181 MiB) on an i7-6700k, but the large tables will be likely vulnerable to AES style cache attacks. */ const uint8_t b0 = get_byte(0, b); const uint8_t b1 = get_byte(1, b); const uint8_t b2 = get_byte(2, b); const uint8_t b3 = get_byte(3, b); const uint32_t t = make_uint32(SBOX[b0], SBOX[b1], SBOX[b2], SBOX[b3]); // L linear transform return t ^ rotate_left(t, 2) ^ rotate_left(t, 10) ^ rotate_left(t, 18) ^ rotate_left(t, 24); } // Variant of T for key schedule inline uint32_t Tp(uint32_t b) { const uint8_t b0 = get_byte(0, b); const uint8_t b1 = get_byte(1, b); const uint8_t b2 = get_byte(2, b); const uint8_t b3 = get_byte(3, b); const uint32_t t = make_uint32(SBOX[b0], SBOX[b1], SBOX[b2], SBOX[b3]); // L' linear transform return t ^ rotate_left(t, 13) ^ rotate_left(t, 23); } } /* * SM4 Encryption */ void SM4::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { for(size_t i = 0; i != blocks; ++i) { uint32_t B0 = load_be(in, 0); uint32_t B1 = load_be(in, 1); uint32_t B2 = load_be(in, 2); uint32_t B3 = load_be(in, 3); for(size_t r = 0; r != 32; r += 4) { B0 ^= SM4_F::T(B1 ^ B2 ^ B3 ^ m_RK[r + 0]); B1 ^= SM4_F::T(B0 ^ B2 ^ B3 ^ m_RK[r + 1]); B2 ^= SM4_F::T(B0 ^ B1 ^ B3 ^ m_RK[r + 2]); B3 ^= SM4_F::T(B0 ^ B1 ^ B2 ^ m_RK[r + 3]); } store_be(out, B3, B2, B1, B0); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * SM4 Decryption */ void SM4::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { for(size_t i = 0; i != blocks; ++i) { uint32_t B0 = load_be(in, 0); uint32_t B1 = load_be(in, 1); uint32_t B2 = load_be(in, 2); uint32_t B3 = load_be(in, 3); for(size_t r = 0; r != 32; r += 4) { B0 ^= SM4_F::T(B1 ^ B2 ^ B3 ^ m_RK[31 - (r + 0)]); B1 ^= SM4_F::T(B0 ^ B2 ^ B3 ^ m_RK[31 - (r + 1)]); B2 ^= SM4_F::T(B0 ^ B1 ^ B3 ^ m_RK[31 - (r + 2)]); B3 ^= SM4_F::T(B0 ^ B1 ^ B2 ^ m_RK[31 - (r + 3)]); } store_be(out, B3, B2, B1, B0); in += BLOCK_SIZE; out += BLOCK_SIZE; } } /* * SM4 Key Schedule */ void SM4::key_schedule(const uint8_t key[], size_t) { // System parameter or family key const uint32_t FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; const uint32_t CK[32] = { 0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249, 0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229, 0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299, 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209, 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279 }; secure_vector K(4); K[0] = load_be(key, 0) ^ FK[0]; K[1] = load_be(key, 1) ^ FK[1]; K[2] = load_be(key, 2) ^ FK[2]; K[3] = load_be(key, 3) ^ FK[3]; m_RK.resize(32); for(size_t i = 0; i != 32; ++i) { K[i % 4] ^= SM4_F::Tp(K[(i+1)%4] ^ K[(i+2)%4] ^ K[(i+3)%4] ^ CK[i]); m_RK[i] = K[i % 4]; } } void SM4::clear() { zap(m_RK); } }